(2x+5)(x+6)=(4x-9)(2x+5)

Simple and best practice solution for (2x+5)(x+6)=(4x-9)(2x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+5)(x+6)=(4x-9)(2x+5) equation:



(2x+5)(x+6)=(4x-9)(2x+5)
We move all terms to the left:
(2x+5)(x+6)-((4x-9)(2x+5))=0
We multiply parentheses ..
(+2x^2+12x+5x+30)-((4x-9)(2x+5))=0
We calculate terms in parentheses: -((4x-9)(2x+5)), so:
(4x-9)(2x+5)
We multiply parentheses ..
(+8x^2+20x-18x-45)
We get rid of parentheses
8x^2+20x-18x-45
We add all the numbers together, and all the variables
8x^2+2x-45
Back to the equation:
-(8x^2+2x-45)
We get rid of parentheses
2x^2-8x^2+12x+5x-2x+30+45=0
We add all the numbers together, and all the variables
-6x^2+15x+75=0
a = -6; b = 15; c = +75;
Δ = b2-4ac
Δ = 152-4·(-6)·75
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2025}=45$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-45}{2*-6}=\frac{-60}{-12} =+5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+45}{2*-6}=\frac{30}{-12} =-2+1/2 $

See similar equations:

| 3+y+3=0 | | 18/x=-9x+33 | | 12=0.2(40+v) | | 2/3w+7/3w=-1/5-6/6 | | 2x-7+×=35 | | 400–3p=–100+2p | | 0=4x^2+8x+8 | | -(7x-2)+4x-4=-2 | | (1)/(3)(x+4)+(5)/(6)(x+4)=x-2 | | 81=11a | | 12-(x-2)^2=3 | | 1/3(x+4)+5/6(x+4)=x-2 | | 2x+1+6=20-3x | | 3x+2/3x=33 | | 5x+6x-3+2=10 | | 5x-12=4(7x-6) | | 1/2(2x-4)=3/4(4x-8) | | x^2-24x-256=0 | | 2x-6=3x-6-x | | 2/7u+4/7=-2/5-4/5 | | (2x-5)²=49 | | A+3b=20 | | v/8-7=-8 | | -57=9w-3 | | -70=-5(u+8) | | 1+2x/7+5-x/3=41/21 | | -5/7x=2/9 | | -11=y/8-2 | | x/4-8=x/7 | | X+10+x+x+20=180 | | 1+2x/21+5-x/3=41/21 | | 7-3n=11n+2 |

Equations solver categories