(2x+30)(2x+50)-1500=600

Simple and best practice solution for (2x+30)(2x+50)-1500=600 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+30)(2x+50)-1500=600 equation:



(2x+30)(2x+50)-1500=600
We move all terms to the left:
(2x+30)(2x+50)-1500-(600)=0
We add all the numbers together, and all the variables
(2x+30)(2x+50)-2100=0
We multiply parentheses ..
(+4x^2+100x+60x+1500)-2100=0
We get rid of parentheses
4x^2+100x+60x+1500-2100=0
We add all the numbers together, and all the variables
4x^2+160x-600=0
a = 4; b = 160; c = -600;
Δ = b2-4ac
Δ = 1602-4·4·(-600)
Δ = 35200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{35200}=\sqrt{1600*22}=\sqrt{1600}*\sqrt{22}=40\sqrt{22}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-40\sqrt{22}}{2*4}=\frac{-160-40\sqrt{22}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+40\sqrt{22}}{2*4}=\frac{-160+40\sqrt{22}}{8} $

See similar equations:

| 2z-37=z+35 | | 3t=8.18 | | 20=5(2x+8) | | 33=x-18 | | 24.4-10.4=x | | 6-7x=-25 | | m+21.1=-36.6 | | 18.84h=56.52 | | y7=63 | | x+13=221 | | 2.5(3+x=2.5x+7.5 | | 5x-3≤=7x+7 | | 43/10-(22/5+51/2)=1/2(-33/5x+11/5) | | 7y-15+2y=9y-15= | | 2x-26=68 | | 2c−c=9 | | -23.7+d=48.57 | | 4.05=t/3 | | (2x+5)2=8x-18 | | 4.05=t3 | | z+6+3z=0 | | W=8c-33 | | 7+7x=7(x+1/2) | | 12=4/7v | | 0.5q+0.6=0.66q | | 7x-8=14-9x | | 40+25x=90+15x | | .2y+27=5y | | 2d+83=13 | | 2x+62/9=8 | | 12h=28 | | -3/4v=-15 |

Equations solver categories