(2x+30)(2x+25)=2(30)(25)

Simple and best practice solution for (2x+30)(2x+25)=2(30)(25) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+30)(2x+25)=2(30)(25) equation:



(2x+30)(2x+25)=2(30)(25)
We move all terms to the left:
(2x+30)(2x+25)-(2(30)(25))=0
determiningTheFunctionDomain (2x+30)(2x+25)-23025=0
We multiply parentheses ..
(+4x^2+50x+60x+750)-23025=0
We get rid of parentheses
4x^2+50x+60x+750-23025=0
We add all the numbers together, and all the variables
4x^2+110x-22275=0
a = 4; b = 110; c = -22275;
Δ = b2-4ac
Δ = 1102-4·4·(-22275)
Δ = 368500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{368500}=\sqrt{100*3685}=\sqrt{100}*\sqrt{3685}=10\sqrt{3685}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(110)-10\sqrt{3685}}{2*4}=\frac{-110-10\sqrt{3685}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(110)+10\sqrt{3685}}{2*4}=\frac{-110+10\sqrt{3685}}{8} $

See similar equations:

| 4x+4=9x-8 | | 4x7=24 | | 9x➕3=3() | | 4(-p^2+p+5)=8 | | 43=73u | | x+6(x-9x)=0 | | 6a2–a–1=0 | | .6a2–a–1=0 | | 10x/100=400 | | -8=x4 | | x-3/10x=49/10 | | x-5)(x^2-5x+25)= | | -8=x34 | | 3z-(+10)=1 | | 3z-(+0)=1 | | x*1/5-4=3 | | 3(1-6m)+6(-4-3m)=-21 | | 54/n=27/24 | | 2÷x=7 | | 2x÷7=24 | | -7(p+3)+2(6p+6)=-19 | | 4y^2+y-66=0 | | 181=96-x | | 9z+9=3z=7z-12+1 | | 0.5(x+10)=6+0.5(x-6) | | x²+16x-1728​=0 | | 0.5(x+15)=6+0.75(x-6) | | 1.8y+2=y | | 4x²-28x-72=0 | | -150=-5(4v+2) | | 4p8=12 | | 10a2=-7 |

Equations solver categories