If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+3)+(3x-7)=(2x+3)(5-7x)
We move all terms to the left:
(2x+3)+(3x-7)-((2x+3)(5-7x))=0
We add all the numbers together, and all the variables
(2x+3)+(3x-7)-((2x+3)(-7x+5))=0
We get rid of parentheses
2x+3x-((2x+3)(-7x+5))+3-7=0
We multiply parentheses ..
-((-14x^2+10x-21x+15))+2x+3x+3-7=0
We calculate terms in parentheses: -((-14x^2+10x-21x+15)), so:We add all the numbers together, and all the variables
(-14x^2+10x-21x+15)
We get rid of parentheses
-14x^2+10x-21x+15
We add all the numbers together, and all the variables
-14x^2-11x+15
Back to the equation:
-(-14x^2-11x+15)
-(-14x^2-11x+15)+5x-4=0
We get rid of parentheses
14x^2+11x+5x-15-4=0
We add all the numbers together, and all the variables
14x^2+16x-19=0
a = 14; b = 16; c = -19;
Δ = b2-4ac
Δ = 162-4·14·(-19)
Δ = 1320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1320}=\sqrt{4*330}=\sqrt{4}*\sqrt{330}=2\sqrt{330}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{330}}{2*14}=\frac{-16-2\sqrt{330}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{330}}{2*14}=\frac{-16+2\sqrt{330}}{28} $
| -30+10+2x=20 | | (3x-1)^2-25=0 | | 20=y4 | | (2d+3)(d=5) | | n×6=18 | | 0.9(0.4x+2.5)-2.5=-1.9(0,8x+3.1) | | 0.9(0.4x=2.5)-2.5=-1.9(0.8x+3.1) | | 0.9(0.4x=2.5)-2.5=-1.9(0.8x+3.1 | | 61.75=(2x+8)(2x+5) | | 8(x+8)=6(18+6) | | a−14=23 | | 222=36-y | | -18=-4k+2 | | 0.08x=48 | | a-21=6 | | -14(b+9)=-14 | | 3.6x-4.6=4.8-1.2x | | 3x-45x=2 | | 238=17d | | d-4-8=6 | | 2+5k=27 | | 13(27-9x)=15-3x | | 3(13g=7g/13-7)-2 | | 13(21-3x)=12-x | | a/6-0.5=0.33 | | x=1000(1.07)x | | 14(-16r-28)=-4r-7 | | -89+14x=13x+98 | | -2p=0.364 | | -5+x/5=-15 | | y/13+5=2 | | 113.04=d |