(2x+20)(2x+40)=1064

Simple and best practice solution for (2x+20)(2x+40)=1064 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+20)(2x+40)=1064 equation:



(2x+20)(2x+40)=1064
We move all terms to the left:
(2x+20)(2x+40)-(1064)=0
We multiply parentheses ..
(+4x^2+80x+40x+800)-1064=0
We get rid of parentheses
4x^2+80x+40x+800-1064=0
We add all the numbers together, and all the variables
4x^2+120x-264=0
a = 4; b = 120; c = -264;
Δ = b2-4ac
Δ = 1202-4·4·(-264)
Δ = 18624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18624}=\sqrt{64*291}=\sqrt{64}*\sqrt{291}=8\sqrt{291}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-8\sqrt{291}}{2*4}=\frac{-120-8\sqrt{291}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+8\sqrt{291}}{2*4}=\frac{-120+8\sqrt{291}}{8} $

See similar equations:

| c=200(10) | | 7d/12=4.2 | | -5m+5=55 | | 5(m+16)=180 | | -2y+6=-4y-8 | | -13-3x=13+8+14x | | s/6+4=4 | | 8n+8n=- | | 9=8x-0.83x^2 | | 7-12x=175 | | (5x+24)°=(7x+7)° | | −5.5x+0.47=−3.93 | | 4g=3g-4 | | 13.66+1.5x=-16.34-2.5x | | 9z+7-2z=23 | | 7c+6=2+#C | | (5x+24)=(7x+7) | | 2x+48=x+48 | | -t+6=t | | x+2.5x=6 | | 3x+49.5=123 | | 13=3m-4 | | -5x+9=36 | | -2(x+4)+1=-2x-7 | | 220+68+12b=360 | | 3(x-5)=2(10)+1 | | 8x+8=7x+18 | | 8x+7+3-3x-x=18 | | -7+2h=3h | | 2(b+5)=14 | | -6x-3x=-5-4 | | 3u+48=180 |

Equations solver categories