(2x+1/x)+(x-4/x+1)=3

Simple and best practice solution for (2x+1/x)+(x-4/x+1)=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1/x)+(x-4/x+1)=3 equation:



(2x+1/x)+(x-4/x+1)=3
We move all terms to the left:
(2x+1/x)+(x-4/x+1)-(3)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We add all the numbers together, and all the variables
(+2x+1/x)+(x-4/x+1)-3=0
We get rid of parentheses
2x+1/x+x-4/x+1-3=0
We multiply all the terms by the denominator
2x*x+x*x+1*x-3*x+1-4=0
We add all the numbers together, and all the variables
-2x+2x*x+x*x-3=0
Wy multiply elements
2x^2+x^2-2x-3=0
We add all the numbers together, and all the variables
3x^2-2x-3=0
a = 3; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·3·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{10}}{2*3}=\frac{2-2\sqrt{10}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{10}}{2*3}=\frac{2+2\sqrt{10}}{6} $

See similar equations:

| 7x-3=-3+7x+5 | | 12x-14=5x+23 | | 6c-12=48= | | z−18=578 | | x/5=10/45 | | x+104+x+96=180 | | 11w+5w+20=360 | | 15-5t+t-11t=3t=12 | | 11w=5w=20 | | 8b+5b-12b=19 | | x+97=x+97=180 | | 1/2(5x-8)=-19 | | 5c-3c=20 | | 13x-76=x | | 8b+5b−12b=19 | | x-3.2=-8.5 | | 2n+8/3=4 | | 3z^2+25z+8=0 | | 7x+18=14x-3 | | 7x+11+17x+1=180 | | p+24=-60 | | -15b+15b-9b+-19b=20 | | -18a−-16a−5a−-2a=10 | | -12s+18s+-17s−-11s−-5s+-8=17 | | 10x-10x+3x+4x-3x=4 | | f-4=60 | | (2a-2)-(a-3)=2 | | f−4=60 | | 29x+2=-2+30x | | 9x=10x+25 | | 6x+8-13x+10=4-6x-11+4 | | 2807=x/1256 |

Equations solver categories