(2x+1)*6=34*3/x

Simple and best practice solution for (2x+1)*6=34*3/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)*6=34*3/x equation:



(2x+1)*6=34*3/x
We move all terms to the left:
(2x+1)*6-(34*3/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(2x+1)*6-(+34*3/x)=0
We multiply parentheses
12x-(+34*3/x)+6=0
We get rid of parentheses
12x-34*3/x+6=0
We multiply all the terms by the denominator
12x*x+6*x-34*3=0
We add all the numbers together, and all the variables
6x+12x*x-102=0
Wy multiply elements
12x^2+6x-102=0
a = 12; b = 6; c = -102;
Δ = b2-4ac
Δ = 62-4·12·(-102)
Δ = 4932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4932}=\sqrt{36*137}=\sqrt{36}*\sqrt{137}=6\sqrt{137}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{137}}{2*12}=\frac{-6-6\sqrt{137}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{137}}{2*12}=\frac{-6+6\sqrt{137}}{24} $

See similar equations:

| -28+2m=-20 | | 2x+.07=0.9 | | 55x^2+490x-45=0 | | -6x-20=-8-7x-7 | | 8x-5/10x+7=4x+3/5x-7 | | 4x-50=9x=75 | | -34=v=42=5v | | 10.3(x+1)=6(x-2) | | -9/5m=9 | | (x-3)×6=138 | | 5y-13=87 | | 370.32=180.078x | | –34=v+42–5v | | (1/3)b=5 | | y/7+2=-14 | | y+134=180 | | 4.12(x–7.89)=18.12 | | -2x+4=2(4x-3)-3(8+4x | | 20-5a=11-2a | | 3-2÷9x=1÷3x-7 | | -(5b+6)=2(3b+8) | | 5u-12=63 | | (15-y)+2y=28 | | 553r+265=48 | | 3x+15-9=2(x+4) | | 1c÷3-7=5 | | r553+265=48 | | 5a+2=4a-1 | | 73(s+3)=273 | | 5(x+2)-2(3x-1)=4(1+2x)-x | | 1x+60=2x+30 | | 6x-5=4x=-105 |

Equations solver categories