If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+1)(x-3)=(x-1)(x+5)-(3x+2)(x-1)
We move all terms to the left:
(2x+1)(x-3)-((x-1)(x+5)-(3x+2)(x-1))=0
We multiply parentheses ..
(+2x^2-6x+x-3)-((x-1)(x+5)-(3x+2)(x-1))=0
We calculate terms in parentheses: -((x-1)(x+5)-(3x+2)(x-1)), so:We get rid of parentheses
(x-1)(x+5)-(3x+2)(x-1)
We multiply parentheses ..
(+x^2+5x-1x-5)-(3x+2)(x-1)
We get rid of parentheses
x^2+5x-1x-(3x+2)(x-1)-5
We multiply parentheses ..
x^2-(+3x^2-3x+2x-2)+5x-1x-5
We add all the numbers together, and all the variables
x^2-(+3x^2-3x+2x-2)+4x-5
We get rid of parentheses
x^2-3x^2+3x-2x+4x+2-5
We add all the numbers together, and all the variables
-2x^2+5x-3
Back to the equation:
-(-2x^2+5x-3)
2x^2+2x^2-6x+x-5x-3+3=0
We add all the numbers together, and all the variables
4x^2-10x=0
a = 4; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·4·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*4}=\frac{0}{8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*4}=\frac{20}{8} =2+1/2 $
| 2+9-9m=-8m+1 | | 4x+27=40 | | 2x+31=4x+3 | | 10=22-4s | | -1=6+6v-1 | | -11=b/7-14 | | 2(-25h+9h)=-50(10h+66)-96(h-99) | | 2+9−9m=-8m+1 | | 15=b+17 | | 3u+10=u-10 | | 66=6(j+8) | | 10x=-55 | | 3=-7n+5/4 | | -12=5n-7n | | 3u+10=-10 | | -7x+62=-36 | | 21+4s=69 | | 7x+2+8x=17 | | 20-12w=-52 | | m/5+30=37 | | f+15=89 | | 9(3C)-1=4c+1(5) | | -6n+n=-20 | | .20x+x=28400 | | 10x+8/2=5 | | 14x=17x-18 | | O.5x+7=4 | | −x+7=−4x−20 | | 12=4(n-88) | | s/5+38=45 | | 18q+18=180 | | 2(s+17)=80 |