If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+1)(x-1)=(4x-1)(x+3)
We move all terms to the left:
(2x+1)(x-1)-((4x-1)(x+3))=0
We multiply parentheses ..
(+2x^2-2x+x-1)-((4x-1)(x+3))=0
We calculate terms in parentheses: -((4x-1)(x+3)), so:We get rid of parentheses
(4x-1)(x+3)
We multiply parentheses ..
(+4x^2+12x-1x-3)
We get rid of parentheses
4x^2+12x-1x-3
We add all the numbers together, and all the variables
4x^2+11x-3
Back to the equation:
-(4x^2+11x-3)
2x^2-4x^2-2x+x-11x-1+3=0
We add all the numbers together, and all the variables
-2x^2-12x+2=0
a = -2; b = -12; c = +2;
Δ = b2-4ac
Δ = -122-4·(-2)·2
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{10}}{2*-2}=\frac{12-4\sqrt{10}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{10}}{2*-2}=\frac{12+4\sqrt{10}}{-4} $
| 3b+4b-b=48 | | 4x3-36x-24=0 | | 2n-3(6)=(5)n+2 | | 7-1/6x=x | | -2x=3x+20 | | 8b+10=35+3b | | -4x+3x=12+9x | | 5·(2x-1)=15 | | 2r-1=19 | | 5(x-3)+20=10 | | 42=3(2x+1) | | 9x+5+10=180 | | 4m+11=29 | | 1.6y+y−4/15y+(1+1/6y)=2+1/3 | | 1.6y+y−4/15y+7/6y=7/3 | | 2(x-2)(2x+3)=0 | | 7x/(5x-2)=10 | | X×x=(x+1)×(x+4 | | 3(x-1)+2(x-3)=-12 | | 7x^2+2x-8=0 | | 8(x+1)-2=8x+5 | | 4(m-2)-2(m+4)=18 | | 4y/6–3=9 | | 4x+6=2(x-4) | | 9x+4=10x+7 | | 13x^2-6x-3=0 | | 2x-5x-5=13 | | 1/4(3x-4)+2/3=6x+2(3x-4) | | 50=10x-50 | | r+27=-53 | | 8x-12=11x=3 | | (x^2)+4=4x+25 |