If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+1)(2x+6)-7x(x-2)=4(x+1)(x-1)-9x)
We move all terms to the left:
(2x+1)(2x+6)-7x(x-2)-(4(x+1)(x-1)-9x))=0
We use the square of the difference formula
x^2+(2x+1)(2x+6)-7x(x-2)+1=0
We multiply parentheses
x^2-7x^2+(2x+1)(2x+6)+14x+1=0
We multiply parentheses ..
x^2-7x^2+(+4x^2+12x+2x+6)+14x+1=0
We add all the numbers together, and all the variables
-6x^2+(+4x^2+12x+2x+6)+14x+1=0
We get rid of parentheses
-6x^2+4x^2+12x+2x+14x+6+1=0
We add all the numbers together, and all the variables
-2x^2+28x+7=0
a = -2; b = 28; c = +7;
Δ = b2-4ac
Δ = 282-4·(-2)·7
Δ = 840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{840}=\sqrt{4*210}=\sqrt{4}*\sqrt{210}=2\sqrt{210}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-2\sqrt{210}}{2*-2}=\frac{-28-2\sqrt{210}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+2\sqrt{210}}{2*-2}=\frac{-28+2\sqrt{210}}{-4} $
| 8+2(5m-8)+3(m+2)=12+4(2m-1 | | 1/c=1/c+1/c | | 3.2x=4.16 | | 30/45=18/x | | (X-12)+y=38 | | 40=8y+2y-5 | | 2x+4x-17=3 | | 8y-7y=6-13 | | -6z-4=28 | | 6/x=1600/1156 | | 4^(x-6)=256 | | x/4+11=38 | | X+35=x+15 | | 21=y/3-14 | | 7*6^5x-4=77 | | (X-3)(6x+1)=0 | | 3x-14/3=x | | 6a+14=4a+2 | | 6x+11=2x+31 | | 6.1x=7.3 | | 6x+10=13x-10 | | 5^x-2=13 | | r^2-2r+100=0 | | 1.5x+x=300000 | | 4y-7=5y+3 | | x=2(3.14)(5)(5)+2(3.14)(15) | | 2(11x+5)=142 | | 7(2x+4)=4(7-2x) | | 2h+0.5h=35 | | 2(w+5)-5w=-17 | | (x+2)*4.5=3.45 | | 9/1=63/x |