(2x+1)(2x+3)=323

Simple and best practice solution for (2x+1)(2x+3)=323 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x+1)(2x+3)=323 equation:



(2x+1)(2x+3)=323
We move all terms to the left:
(2x+1)(2x+3)-(323)=0
We multiply parentheses ..
(+4x^2+6x+2x+3)-323=0
We get rid of parentheses
4x^2+6x+2x+3-323=0
We add all the numbers together, and all the variables
4x^2+8x-320=0
a = 4; b = 8; c = -320;
Δ = b2-4ac
Δ = 82-4·4·(-320)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5184}=72$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-72}{2*4}=\frac{-80}{8} =-10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+72}{2*4}=\frac{64}{8} =8 $

See similar equations:

| 3/2*a-13=5 | | -7=-c/6=+12 | | 9x+6+-6x=27 | | 9x+6+-6x=2( | | (2x)^2-x=0 | | 2x^2-x+0=0 | | 80-3x=180 | | 10x^2+120x-1600=0 | | 3(x-4/3)=3x+8 | | 1/3(6x-5)-x=-1/3-2(x+1) | | 2(v-4)=5v-5 | | -7u+17=5(u+1) | | 8(y+1)=3y-17 | | n+11=3(14÷2) | | 0=m+1-2 | | 9n+(5÷5)=1 | | -4(v+14)=0 | | 1x-0.5x=0 | | 3=(-5g)-4 | | 3=(-4g)-5 | | 71.40=3.9g+44.1 | | 2-2e=0 | | 44=17+-9m | | 100=a+61 | | 7=27-4y | | 23-4r=19 | | 10x+23(x-4)=304 | | q-29=46 | | 5(u-7)-8=-29 | | 50=22c | | 18÷4-2x÷4=8 | | 9q-21=6 |

Equations solver categories