If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x+1)(2x+1)=3(x+1)(x+1)
We move all terms to the left:
(2x+1)(2x+1)-(3(x+1)(x+1))=0
We multiply parentheses ..
(+4x^2+2x+2x+1)-(3(x+1)(x+1))=0
We calculate terms in parentheses: -(3(x+1)(x+1)), so:We get rid of parentheses
3(x+1)(x+1)
We multiply parentheses ..
3(+x^2+x+x+1)
We multiply parentheses
3x^2+3x+3x+3
We add all the numbers together, and all the variables
3x^2+6x+3
Back to the equation:
-(3x^2+6x+3)
4x^2-3x^2+2x+2x-6x+1-3=0
We add all the numbers together, and all the variables
x^2-2x-2=0
a = 1; b = -2; c = -2;
Δ = b2-4ac
Δ = -22-4·1·(-2)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{3}}{2*1}=\frac{2-2\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{3}}{2*1}=\frac{2+2\sqrt{3}}{2} $
| (2x+50)x(3x)=90 | | 1x+1x=11 | | (2x+50)+(3x)=90 | | (2x+50)(3x)=90 | | (-2+3)-(17x-3)=x | | 10+d=25 | | (70+70+80+75)+x=75 | | -3x-1x^2-5x+9x=0 | | 2+4x=5x-8=35 | | (4x-6)=70 | | 70+70+75+80+x=75 | | -45x^2+15x^2-10x=0 | | -17-6n=32 | | (x+1)(x+1)=2(x-1)(x-1) | | -23x+14-7x+6=10x-17+3x+4 | | -158=-26+a/15 | | 11-3k=-13 | | |2x-7|=23 | | 33-w/9=25 | | (9-3)X(5-2)=x | | (9-3)*(5-2)=x | | 4z+64=4(4z+4) | | 14.9-3u=5.3 | | -8x-30=7(3-2x) | | 180=20+(2x+25)+x | | 15.4=4.4-2.4r | | -84=-18+h/12 | | 0.10(y-7)+0.08y=0.14y-0.5 | | 22-q/7=17 | | 24-8x=36 | | ((5x-16)^(3)-4)^(3)=216000 | | 11^-4x=12^x-7 |