(2x)+(128x2)=360

Simple and best practice solution for (2x)+(128x2)=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x)+(128x2)=360 equation:



(2x)+(128x^2)=360
We move all terms to the left:
(2x)+(128x^2)-(360)=0
determiningTheFunctionDomain 128x^2+2x-360=0
a = 128; b = 2; c = -360;
Δ = b2-4ac
Δ = 22-4·128·(-360)
Δ = 184324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{184324}=\sqrt{4*46081}=\sqrt{4}*\sqrt{46081}=2\sqrt{46081}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{46081}}{2*128}=\frac{-2-2\sqrt{46081}}{256} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{46081}}{2*128}=\frac{-2+2\sqrt{46081}}{256} $

See similar equations:

| 12-3b=4 | | 90=5x+35 | | 180=5x+80 | | 3t-7=t-20 | | 2x+1=5x-3x-1 | | 2x+1=5x+2x-1 | | 2p+12=7p-4 | | 5y+7=2y+17 | | 5a-22=0 | | 2x+1=3x-x+1 | | -3(x-19)=-24 | | 2/1-​r−3=3(4−2/3r) | | x-0.03x-0.03x*0.13=52110.95 | | (6t-9)+4t+4t=180 | | 2x=16.4+x | | -5.2=4.5z+11 | | 16x-16=4(4x-4) | | 21​r−3=3(4−23​r) | | 2m+1=4m-8 | | 5m−3=4m+5. | | (15x+5)+(22x+4)+120=180 | | 4+b=16 | | 43+b=62 | | 50+15x=75+10x | | 4x+3/2+x=5x+41/4 | | 4(7b+8)-2(8+5b)=52 | | 3p+7p=98 | | 4=b+3 | | 8t=88 | | 64.98/2=x | | -15-11y=-8-3y-1 | | 4x+17/5+5x+2/4=6 |

Equations solver categories