If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)(3x+5)=90
We move all terms to the left:
(2x)(3x+5)-(90)=0
We multiply parentheses
6x^2+10x-90=0
a = 6; b = 10; c = -90;
Δ = b2-4ac
Δ = 102-4·6·(-90)
Δ = 2260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2260}=\sqrt{4*565}=\sqrt{4}*\sqrt{565}=2\sqrt{565}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{565}}{2*6}=\frac{-10-2\sqrt{565}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{565}}{2*6}=\frac{-10+2\sqrt{565}}{12} $
| 3x−5(x−2)=−7+3x | | 2b+b/2-60=0 | | 7p+8=4p-10 | | 12=3x–3 | | 3/2x+2x/5=7/10 | | 4/y − 2 = 2 | | 1/8.n=40 | | -50=-3x-2x | | (X-8)÷6=x+2 | | 7b,2=28,14 | | 7(9b+3)=-33 | | -16=7w+5 | | 40=-5+6n-3 | | {j}{-2}+7=-12−2 | | 6(w–18)=–18 | | {j}{-2}+7=-12−2j | | 3x+9+2x=4x-4 | | 6=13+w/2 | | 1/3;4a1)=1/2a | | -9=6w-27 | | -100x=50 | | k2−3=–2 | | b+b+b/2=60 | | (4x+16)(3×-18)=0 | | k2− 3=–2 | | 5p=7(p-4) | | 2(x+2)^2-4=68 | | −4(2x−3)+6=−2(3x+1)+2x+8 | | 5y=91/2 | | 180=(15x) | | 5(10a-2=) | | 12x-4=24+2x |