(2k+17)(3k-9)(k-3)k=

Simple and best practice solution for (2k+17)(3k-9)(k-3)k= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2k+17)(3k-9)(k-3)k= equation:


Simplifying
(2k + 17)(3k + -9)(k + -3) * k = 0

Reorder the terms:
(17 + 2k)(3k + -9)(k + -3) * k = 0

Reorder the terms:
(17 + 2k)(-9 + 3k)(k + -3) * k = 0

Reorder the terms:
(17 + 2k)(-9 + 3k)(-3 + k) * k = 0

Reorder the terms for easier multiplication:
k(17 + 2k)(-9 + 3k)(-3 + k) = 0

Multiply (17 + 2k) * (-9 + 3k)
k(17(-9 + 3k) + 2k * (-9 + 3k))(-3 + k) = 0
k((-9 * 17 + 3k * 17) + 2k * (-9 + 3k))(-3 + k) = 0
k((-153 + 51k) + 2k * (-9 + 3k))(-3 + k) = 0
k(-153 + 51k + (-9 * 2k + 3k * 2k))(-3 + k) = 0
k(-153 + 51k + (-18k + 6k2))(-3 + k) = 0

Combine like terms: 51k + -18k = 33k
k(-153 + 33k + 6k2)(-3 + k) = 0

Multiply (-153 + 33k + 6k2) * (-3 + k)
k(-153(-3 + k) + 33k * (-3 + k) + 6k2 * (-3 + k)) = 0
k((-3 * -153 + k * -153) + 33k * (-3 + k) + 6k2 * (-3 + k)) = 0
k((459 + -153k) + 33k * (-3 + k) + 6k2 * (-3 + k)) = 0
k(459 + -153k + (-3 * 33k + k * 33k) + 6k2 * (-3 + k)) = 0
k(459 + -153k + (-99k + 33k2) + 6k2 * (-3 + k)) = 0
k(459 + -153k + -99k + 33k2 + (-3 * 6k2 + k * 6k2)) = 0
k(459 + -153k + -99k + 33k2 + (-18k2 + 6k3)) = 0

Combine like terms: -153k + -99k = -252k
k(459 + -252k + 33k2 + -18k2 + 6k3) = 0

Combine like terms: 33k2 + -18k2 = 15k2
k(459 + -252k + 15k2 + 6k3) = 0
(459 * k + -252k * k + 15k2 * k + 6k3 * k) = 0
(459k + -252k2 + 15k3 + 6k4) = 0

Solving
459k + -252k2 + 15k3 + 6k4 = 0

Solving for variable 'k'.

Factor out the Greatest Common Factor (GCF), '3k'.
3k(153 + -84k + 5k2 + 2k3) = 0

Ignore the factor 3.

Subproblem 1

Set the factor 'k' equal to zero and attempt to solve: Simplifying k = 0 Solving k = 0 Move all terms containing k to the left, all other terms to the right. Simplifying k = 0

Subproblem 2

Set the factor '(153 + -84k + 5k2 + 2k3)' equal to zero and attempt to solve: Simplifying 153 + -84k + 5k2 + 2k3 = 0 Solving 153 + -84k + 5k2 + 2k3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.

Solution

k = {0}

See similar equations:

| 0.8(-1.62-8x)=-6.2x | | x+2=2(2x-2) | | -7x-6y=18 | | 3y-9=11y+63 | | 3x-4=3x+2 | | s-0.96=0.98s | | 5u+10=7u+12 | | 4+2x-1=5+x-1 | | {4}{5}/{2}{3} | | -3y+y=-9 | | 3+x-2=2+x-1 | | (6-x)(2x-1)=0 | | 0.75x+0.05(4-x)=0.10(-68) | | -45/5-7 | | 20+n=-2(4+3a) | | -2(3s-6)-12=-2(9s+1)-3 | | 3x=46+x | | t^2-25t+64=0 | | 5-7/9 | | 2x^3-5x^2-5x-3=0 | | -2/5x-9=9/10 | | 6x-4=42 | | -5/2=-3/8 | | -16+4x=-24+1x | | 4x-5=2(0.5x+2) | | 5x+11=2x+101 | | 5t^2+t-3=0 | | http://media.education2020.com/evresources//2003-06-01-00-00_files/i0120000.jpg | | 9-3W=3+4W | | -8-(t+5)=-6(t-2) | | 3-p=12 | | (-8)*(8)= |

Equations solver categories