(25+2x)(21+4x)=714

Simple and best practice solution for (25+2x)(21+4x)=714 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (25+2x)(21+4x)=714 equation:



(25+2x)(21+4x)=714
We move all terms to the left:
(25+2x)(21+4x)-(714)=0
We add all the numbers together, and all the variables
(2x+25)(4x+21)-714=0
We multiply parentheses ..
(+8x^2+42x+100x+525)-714=0
We get rid of parentheses
8x^2+42x+100x+525-714=0
We add all the numbers together, and all the variables
8x^2+142x-189=0
a = 8; b = 142; c = -189;
Δ = b2-4ac
Δ = 1422-4·8·(-189)
Δ = 26212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26212}=\sqrt{4*6553}=\sqrt{4}*\sqrt{6553}=2\sqrt{6553}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(142)-2\sqrt{6553}}{2*8}=\frac{-142-2\sqrt{6553}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(142)+2\sqrt{6553}}{2*8}=\frac{-142+2\sqrt{6553}}{16} $

See similar equations:

| 7x^2=147x | | (5x+10)^2-6=0 | | 17=9j-10 | | X-1/3+1/3=-x/8 | | d+13=3 | | 0.25x+4=0.15x-1 | | -19.4-15y+22y=4.4 | | 15+2y=2y | | (-19.4)-15y+22y=4.4 | | r/3-(-6)=7 | | 6x-30=100 | | -20+(-8)d=12 | | -2f=-8-4f | | -(x-1)=6x-27 | | x+(x12)+(x7)=100 | | 1+4/8x=5/4+1/8x | | 14.69h+0.07=15.44h+0.08 | | 6+2(y-4)=2(y-1) | | 2.7+3(-x+6.3)+x=-2.3 | | 3(4n-8)=40=4N | | s/3=-2 | | 3x-8(2x+3)=6(2x+3) | | r/3+4=2 | | 16w-8w=72 | | 4n-16=4(1-4n) | | t/10=-14 | | r/3+(-4)=2 | | 2x-1.8=(3.18+x)÷2 | | 35=7+4p | | 12.3-v=0.7 | | -4a+12+2a=7a-3a | | 15p(0.25)=20p(0.05) |

Equations solver categories