(24m-16)(-1/2)=30

Simple and best practice solution for (24m-16)(-1/2)=30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (24m-16)(-1/2)=30 equation:



(24m-16)(-1/2)=30
We move all terms to the left:
(24m-16)(-1/2)-(30)=0
We multiply parentheses ..
(-24m^2-16*-1/2)-30=0
We multiply all the terms by the denominator
(-24m^2-16*-1-30*2)=0
We get rid of parentheses
-24m^2-1-16*-30*2=0
We add all the numbers together, and all the variables
-24m^2+959=0
a = -24; b = 0; c = +959;
Δ = b2-4ac
Δ = 02-4·(-24)·959
Δ = 92064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92064}=\sqrt{16*5754}=\sqrt{16}*\sqrt{5754}=4\sqrt{5754}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5754}}{2*-24}=\frac{0-4\sqrt{5754}}{-48} =-\frac{4\sqrt{5754}}{-48} =-\frac{\sqrt{5754}}{-12} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5754}}{2*-24}=\frac{0+4\sqrt{5754}}{-48} =\frac{4\sqrt{5754}}{-48} =\frac{\sqrt{5754}}{-12} $

See similar equations:

| (12/3)=r-(1/3) | | 12x-13=8x-5 | | 12x+31=51 | | 1/2x+3=1 | | -19x=-171 | | 5z+9=9z | | b+13/4=27/12 | | 65+3.6x=-43 | | 5–9h=50 | | 4/3+3m/5=32/15 | | 7+2x=4x−3 | | -43+3.6x=65 | | 4x-5.3=-18 | | w+0.12w=7.28 | | 8y-2=2/8 | | 0.7x+.04(20)=0.5(x+20) | | 1.2a=0.72 | | 6q-(q-3)=2q=3(q+1) | | 2/3x+9=8(1/3x-2) | | 1/6d+2/3=1/4(d−2) | | 1/5(21/2p+10)=51/3 | | 16d+2/3=14(d−2) | | 7/8+3/4x=5x | | 2−2s=3/4s+13 | | 8=-1.2(d+1) | | 2x(X+2)-6=X^2+4x-6 | | X/2+4=5-x/2 | | −15y+7+17y=2y+70 | | 4/3(2x-1=-12 | | 0.08x=90 | | (3/4+1/2n)(-2/3)=-7/12 | | 5/3x+1=1/3+1/3x |

Equations solver categories