(240+x)(375+x)=180000

Simple and best practice solution for (240+x)(375+x)=180000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (240+x)(375+x)=180000 equation:



(240+x)(375+x)=180000
We move all terms to the left:
(240+x)(375+x)-(180000)=0
We add all the numbers together, and all the variables
(x+240)(x+375)-180000=0
We multiply parentheses ..
(+x^2+375x+240x+90000)-180000=0
We get rid of parentheses
x^2+375x+240x+90000-180000=0
We add all the numbers together, and all the variables
x^2+615x-90000=0
a = 1; b = 615; c = -90000;
Δ = b2-4ac
Δ = 6152-4·1·(-90000)
Δ = 738225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{738225}=\sqrt{225*3281}=\sqrt{225}*\sqrt{3281}=15\sqrt{3281}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(615)-15\sqrt{3281}}{2*1}=\frac{-615-15\sqrt{3281}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(615)+15\sqrt{3281}}{2*1}=\frac{-615+15\sqrt{3281}}{2} $

See similar equations:

| (240+x)(375+x)=90000 | | 4w+1.5=8.5 | | χ²-7x+12=0 | | χ²+x-12=0 | | 1+1x=2x-5 | | 3x+19+5x+75=180 | | 8/9x=96 | | x+(2/5)=(4x/5)+1 | | 6.75t+9=15.5+16 | | 10y+5=3y | | -5(n-2)-7(n-2)=48 | | (3p/2)-4(p-2)=23 | | 9/10=10x | | F(x)=-x2+15x-56 | | 6x+14=-2-8x | | 4-8x=14x+70 | | 5(1-5a)=130 | | 3(1-x)+x=1 | | 180=10x/0,150x | | 180=10x/0,150 | | (4x)7+16x=-1x+18 | | (4x)7+16x=-1x | | (4x)7+16x=x | | 47=2y+9 | | 2(3x+5)=8x+2-2x+8 | | 9x+16x-7=5(5x+9) | | 6^(3x)=3^(2x-1) | | 4(w+4)=5-w | | 6x+22x-7=7(4x+4) | | 4w=w-3 | | 7y-3y=23÷9 | | 0.003x=15 |

Equations solver categories