(22x-11)=(12x-8x2)

Simple and best practice solution for (22x-11)=(12x-8x2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (22x-11)=(12x-8x2) equation:



(22x-11)=(12x-8x^2)
We move all terms to the left:
(22x-11)-((12x-8x^2))=0
We get rid of parentheses
-((12x-8x^2))+22x-11=0
We calculate terms in parentheses: -((12x-8x^2)), so:
(12x-8x^2)
We get rid of parentheses
-8x^2+12x
Back to the equation:
-(-8x^2+12x)
We get rid of parentheses
8x^2-12x+22x-11=0
We add all the numbers together, and all the variables
8x^2+10x-11=0
a = 8; b = 10; c = -11;
Δ = b2-4ac
Δ = 102-4·8·(-11)
Δ = 452
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{452}=\sqrt{4*113}=\sqrt{4}*\sqrt{113}=2\sqrt{113}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{113}}{2*8}=\frac{-10-2\sqrt{113}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{113}}{2*8}=\frac{-10+2\sqrt{113}}{16} $

See similar equations:

| c23=28 | | 18w=270 | | 15+6t=89 | | −2=x−53 | | 18-3x=-84 | | 24z=3 | | 624=12v | | 914=17y−512 | | -10x=5x-8 | | 2x+3(60)=60 | | 15m=270 | | 6=12+10w | | (22x-11)/2=(12x-8) | | 10-6b=-4(6b+2) | | 2(30+-1.5y)+3y=60 | | 6c+1.4=1.85 | | -2(8w-8)+9w=3(w+6) | | 214=62-u | | t+364=590 | | y=-0.5(6.25)+6 | | 3x-6+2x=x-6+4x | | (7x-30)(6x-10)=180 | | 1+p=-5 | | 5y+6+8y-3y=76 | | -3+7(m+8)=10 | | m^2+5m+6=m^2-4 | | -13(9x+19)=806 | | x+15=150 | | 360=n+n+n+n+90+90 | | 5+b=25 | | 15+1.50x=25+x | | 5(2x-8)+20=40 |

Equations solver categories