(21/5)x+3=10

Simple and best practice solution for (21/5)x+3=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/5)x+3=10 equation:



(21/5)x+3=10
We move all terms to the left:
(21/5)x+3-(10)=0
Domain of the equation: 5)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+21/5)x+3-10=0
We add all the numbers together, and all the variables
(+21/5)x-7=0
We multiply parentheses
21x^2-7=0
a = 21; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·21·(-7)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{3}}{2*21}=\frac{0-14\sqrt{3}}{42} =-\frac{14\sqrt{3}}{42} =-\frac{\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{3}}{2*21}=\frac{0+14\sqrt{3}}{42} =\frac{14\sqrt{3}}{42} =\frac{\sqrt{3}}{3} $

See similar equations:

| 34x-9+12x=-4 | | 3x²+5=53 | | 96+15t+13t=180 | | 4x+8=-1+x | | 4g=10-6g | | A(x)=-2 | | 50x1=155 | | -1=3x-10=8 | | 3(x+-1.8)=2x+1 | | -13x=-8-12x | | 56+2p+82=180 | | (10x+6)/2=5x+3 | | 3=2(5+2x)+1 | | x(x+1)=0.65*0.65 | | 2x-4=-10+1x | | -2x=-9-5x | | -3(x-2)-3=3 | | 5(2p-4)-8(2p+5)=-48 | | -12=1-8a+3 | | G(-2)=y/y+4 | | 2b-18=4b-2 | | -6(1-p)=-20-p | | -3n=-10-n | | -10+2x+x+3=3(x+1) | | 2(x+18)=5 | | (1/3)x+(1/4)=5/12 | | x8=45 | | 4-9r=50 | | -14-3c=-17c | | 3x+2=10-3x | | 861-20w=14w-57 | | 16.328=2(3.14r) |

Equations solver categories