(21/24)x=25/8

Simple and best practice solution for (21/24)x=25/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/24)x=25/8 equation:



(21/24)x=25/8
We move all terms to the left:
(21/24)x-(25/8)=0
Domain of the equation: 24)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+21/24)x-(+25/8)=0
We multiply parentheses
21x^2-(+25/8)=0
We get rid of parentheses
21x^2-25/8=0
We multiply all the terms by the denominator
21x^2*8-25=0
Wy multiply elements
168x^2-25=0
a = 168; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·168·(-25)
Δ = 16800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16800}=\sqrt{400*42}=\sqrt{400}*\sqrt{42}=20\sqrt{42}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{42}}{2*168}=\frac{0-20\sqrt{42}}{336} =-\frac{20\sqrt{42}}{336} =-\frac{5\sqrt{42}}{84} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{42}}{2*168}=\frac{0+20\sqrt{42}}{336} =\frac{20\sqrt{42}}{336} =\frac{5\sqrt{42}}{84} $

See similar equations:

| (1/3)f-3=1 | | 10(y+7=12y | | 4t=t+63 | | 32/7x=-6/5 | | 2+1/x=11/x | | 3m+6=6m-15 | | -12=4(v-2) | | 5/6n-3=5/8+7 | | 6(8h-5)=26-4h | | 5x^2+27x+10=10 | | 5(x+9)=x+57 | | 11y-4y=42 | | -80-x=188 | | 5x-38=37 | | .05(-y+1500)+.04y=680 | | 2x=2x=4 | | x^2+6x-9=-17 | | 108-u=232 | | (1/6)d+2/3=(1/4)(d−2) | | -2(5.25+6.2x)=4(-3x+2) | | x(11x+21)=54 | | 126=-2x-5(-x-21 | | 3x-8/4=x | | 12x^2-15x-3=3 | | 3(w-3)=9w+2-2(-6-2) | | 3x-8÷4=x | | |5x+15|=100 | | -16x^2+1064x=0 | | 8u+3-u=-2(u-4)+1 | | 8+4x=-10+× | | 378.72=180+.96x | | -47-2x=-11 |

Equations solver categories