(21/10)n=11/6

Simple and best practice solution for (21/10)n=11/6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21/10)n=11/6 equation:



(21/10)n=11/6
We move all terms to the left:
(21/10)n-(11/6)=0
Domain of the equation: 10)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+21/10)n-(+11/6)=0
We multiply parentheses
21n^2-(+11/6)=0
We get rid of parentheses
21n^2-11/6=0
We multiply all the terms by the denominator
21n^2*6-11=0
Wy multiply elements
126n^2-11=0
a = 126; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·126·(-11)
Δ = 5544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5544}=\sqrt{36*154}=\sqrt{36}*\sqrt{154}=6\sqrt{154}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{154}}{2*126}=\frac{0-6\sqrt{154}}{252} =-\frac{6\sqrt{154}}{252} =-\frac{\sqrt{154}}{42} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{154}}{2*126}=\frac{0+6\sqrt{154}}{252} =\frac{6\sqrt{154}}{252} =\frac{\sqrt{154}}{42} $

See similar equations:

| -x+9=180 | | 6x+10+7x+2=180 | | 5k+2=3k+6 | | Y=x/2+6 | | –0.5(x–2.4)=6 | | 5/5x+4=3/8+12 | | 7y-10+31=180 | | 7+2(a-3)=-9, | | 15x+8=12x+16 | | 196=3x-7-x-18 | | 2.2+10m=8.15 | | 25x–10= | | x+x-20=x+12 | | 16y+39=183 | | 14w+15w-7+6=-4w+6-7 | | 5x+4=3/8x+12 | | (2x+15)+(4x+9)=90 | | x+x-3=6 | | 4h−4h=0 | | x=17-25= | | 3-x+6=-5 | | 25+8x=13x-11 | | 10x+3=7+24 | | 3(5z+2)=51 | | ×+y=31 | | x+103+133+58=360 | | n+2=9×6 | | 3x-25=2x+28 | | 2r−2=6 | | 8^x+1=16 | | x(x*x+2)-30=0 | | x/5+x/3+3(x/5-x/3)+1=x |

Equations solver categories