(21*21)+(17*17)=(x*x)

Simple and best practice solution for (21*21)+(17*17)=(x*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (21*21)+(17*17)=(x*x) equation:



(21*21)+(17*17)=(x*x)
We move all terms to the left:
(21*21)+(17*17)-((x*x))=0
We add all the numbers together, and all the variables
-((+x*x))+441+289=0
We add all the numbers together, and all the variables
-((+x*x))+730=0
We calculate terms in parentheses: -((+x*x)), so:
(+x*x)
We get rid of parentheses
x*x
Wy multiply elements
x^2
Back to the equation:
-(x^2)
We add all the numbers together, and all the variables
-1x^2+730=0
a = -1; b = 0; c = +730;
Δ = b2-4ac
Δ = 02-4·(-1)·730
Δ = 2920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2920}=\sqrt{4*730}=\sqrt{4}*\sqrt{730}=2\sqrt{730}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{730}}{2*-1}=\frac{0-2\sqrt{730}}{-2} =-\frac{2\sqrt{730}}{-2} =-\frac{\sqrt{730}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{730}}{2*-1}=\frac{0+2\sqrt{730}}{-2} =\frac{2\sqrt{730}}{-2} =\frac{\sqrt{730}}{-1} $

See similar equations:

| 16=6c+2c | | -17x+33x=28 | | 7(4-6x)=308 | | 20-5x=75-(-5)×(-3) | | -2x-6=2-4x-(x-1)) | | -17x=33x=28+ | | 6b-7=-13+5b | | 4x-2(x+6)=36 | | 5(2x-4)=4x+7-3x | | -17x=33x=288 | | 4=-u–95 | | -33=-8w+3(w-6) | | 2(4u-9)=19 | | (24*24)+(7*7)=x*x | | 6/x=2/3x+10 | | 2x^2-10x-199=0 | | -15+2x=130+5x | | 15x-4=29 | | 7+24x=480+7 | | 4(a-6)=8a-(4a | | 5(2n+1)-3n=96 | | 2=-p–53 | | 102-2y+7y-17=180 | | p-4=9p | | -3x+4=19+2x | | -9w-7=-5+4w-5w | | 10n+5-3n=96 | | w2–9=-11 | | 9(5c-1)-10=43c+19 | | 9(d+3)=90 | | -80=10(4+t) | | -5+v=v-5 |

Equations solver categories