(20+2x)(12+2x)-240=560

Simple and best practice solution for (20+2x)(12+2x)-240=560 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (20+2x)(12+2x)-240=560 equation:



(20+2x)(12+2x)-240=560
We move all terms to the left:
(20+2x)(12+2x)-240-(560)=0
We add all the numbers together, and all the variables
(2x+20)(2x+12)-240-560=0
We add all the numbers together, and all the variables
(2x+20)(2x+12)-800=0
We multiply parentheses ..
(+4x^2+24x+40x+240)-800=0
We get rid of parentheses
4x^2+24x+40x+240-800=0
We add all the numbers together, and all the variables
4x^2+64x-560=0
a = 4; b = 64; c = -560;
Δ = b2-4ac
Δ = 642-4·4·(-560)
Δ = 13056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13056}=\sqrt{256*51}=\sqrt{256}*\sqrt{51}=16\sqrt{51}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-16\sqrt{51}}{2*4}=\frac{-64-16\sqrt{51}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+16\sqrt{51}}{2*4}=\frac{-64+16\sqrt{51}}{8} $

See similar equations:

| 7x+99=20x | | 5x=50+7.50 | | 64+7e^2=92 | | 24−3q=18 | | y/26+77=81 | | 11x+20=8x | | -5x+3=x-9 | | 2=s-86/7 | | 16=1-8h=-5h-3 | | 11x+20=2(8x) | | z-89/3=3 | | s/7-86=-80 | | 59+2k=71 | | x-(0.72*x)=7.2 | | f+257=568 | | 3+5x=6=3x | | 25=-2x+5 | | 4w2+12w+8=0 | | 2/50=x/650 | | c/2+15=18 | | r+611=289 | | y/2+17=28 | | 20+2h=24 | | r+-611=289 | | 3=d-70/5 | | 2(z+5)+4=1 | | 1/4g-8=3/2;38 | | (7x-26)=(5x=10) | | -22z=594 | | p1/3-3=114 | | 5/(2x-4)=20 | | x+19.98=30.10 |

Equations solver categories