If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(20)(36)=(2x-6)(x+6)
We move all terms to the left:
(20)(36)-((2x-6)(x+6))=0
We multiply parentheses ..
-((+2x^2+12x-6x-36))+2036=0
We calculate terms in parentheses: -((+2x^2+12x-6x-36)), so:We get rid of parentheses
(+2x^2+12x-6x-36)
We get rid of parentheses
2x^2+12x-6x-36
We add all the numbers together, and all the variables
2x^2+6x-36
Back to the equation:
-(2x^2+6x-36)
-2x^2-6x+36+2036=0
We add all the numbers together, and all the variables
-2x^2-6x+2072=0
a = -2; b = -6; c = +2072;
Δ = b2-4ac
Δ = -62-4·(-2)·2072
Δ = 16612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16612}=\sqrt{4*4153}=\sqrt{4}*\sqrt{4153}=2\sqrt{4153}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{4153}}{2*-2}=\frac{6-2\sqrt{4153}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{4153}}{2*-2}=\frac{6+2\sqrt{4153}}{-4} $
| x+12+7x=180 | | 38=500n+800 | | 5d-4=19 | | 114=3x+39 | | y/7-1.1=-18.6 | | 2x+6x+16.8=90 | | 1/2m=18 | | 5000=50+25n | | 18m=1/2 | | x+12+32+3x-36=360 | | 15w=1/3 | | 7x+1=9x+1 | | 3x+24+8x-11=90 | | 7+x/12=13 | | 29y=377 | | 3/4/w=60 | | 30=-7.5w-31.5 | | 3x+2+8x-11=90 | | x/20=32 | | 10-4y=102 | | 10.5=1.5p-4.5 | | 5x+79=119 | | y=1.05 | | 12=b/5-5 | | A÷q=3 | | -4z-z-5=8 | | X+13=3q | | 9=c+15 | | x^2=-6x+54 | | -9+a/6=13 | | 19/16x+7/8=9/8x | | 2/3(3x+5)=4x+3 |