(2/x)+(3/5x)=1

Simple and best practice solution for (2/x)+(3/5x)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/x)+(3/5x)=1 equation:



(2/x)+(3/5x)=1
We move all terms to the left:
(2/x)+(3/5x)-(1)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/x)+(+3/5x)-1=0
We get rid of parentheses
2/x+3/5x-1=0
We calculate fractions
10x/5x^2+3x/5x^2-1=0
We multiply all the terms by the denominator
10x+3x-1*5x^2=0
We add all the numbers together, and all the variables
13x-1*5x^2=0
Wy multiply elements
-5x^2+13x=0
a = -5; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·(-5)·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*-5}=\frac{-26}{-10} =2+3/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*-5}=\frac{0}{-10} =0 $

See similar equations:

| -2u+48=-5u+45 | | 5x^2+10x=90 | | -41=3x-2(-3x-2) | | 2(x+11)=20 | | 4x+20=2x-26 | | 3x+6x=180. | | 13x-4×5=2×+4×2 | | 4x^2-16x-48=12 | | -2x+6(2x-3)=32 | | 4/5=16/w | | 3000-40=2700-35x | | 17(x+2)+45.99=200 | | x+51=72 | | -21=-3x-6(-2x-4) | | x^2-20x=-34 | | 2(14+n)=-10 | | 28=-3x-6(-2-4) | | 9x+5x=65 | | 3x-4x+6=7x+8-2 | | -3x-5(-x+3)=-37 | | 9(x+2)+3x=-30 | | -7x-4(-3x+4)=29 | | -4x+7(-x+8)=8 | | -2(y+5)=6(y-2)+2 | | -21+x/4=-9 | | 2(y-2)=-5y-46 | | -3x-6(x+6)=72 | | -7x-2(x+9)=24 | | Y-17=-9x | | 3x-4(x-13)=60 | | 7-(x+8)/4=3(x-3)/5-3/2 | | 200-4q=-1q |

Equations solver categories