(2/9)x-4=2/3=

Simple and best practice solution for (2/9)x-4=2/3= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/9)x-4=2/3= equation:



(2/9)x-4=2/3=
We move all terms to the left:
(2/9)x-4-(2/3)=0
Domain of the equation: 9)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/9)x-4-(+2/3)=0
We multiply parentheses
2x^2-4-(+2/3)=0
We get rid of parentheses
2x^2-4-2/3=0
We multiply all the terms by the denominator
2x^2*3-2-4*3=0
We add all the numbers together, and all the variables
2x^2*3-14=0
Wy multiply elements
6x^2-14=0
a = 6; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·6·(-14)
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{21}}{2*6}=\frac{0-4\sqrt{21}}{12} =-\frac{4\sqrt{21}}{12} =-\frac{\sqrt{21}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{21}}{2*6}=\frac{0+4\sqrt{21}}{12} =\frac{4\sqrt{21}}{12} =\frac{\sqrt{21}}{3} $

See similar equations:

| f(19)=13 | | 4(4x+6)=16 | | f(0)=13 | | 3x+4-1=2x+9 | | 2x+(3x-(2x-1))=9-(2-4x) | | -3-5(6n-1)=-238 | | -9x17=-26 | | 4(3+x)=10+2(2+x) | | 15=5m/10 | | -9x-17=-6 | | 4(3+x)=10+2 | | 6=x/5+11 | | 10.33=8.5x(1+X) | | 40=2x+165÷5 | | 10(2.2-b)-6=21.2 | | (3x+19)=(4x−13) | | 15x=29.5 | | 3x=180-165-50 | | 3+3(x+1)=20 | | 10.33=8.5x(1+X)^4 | | -42=-7v | | -8/13b=73 | | -5(9+4x)=175 | | 7(1x+9)=84 | | 3/9=2/a | | 7(-2x+9)=-49 | | 8x+3–5x=18 | | 6/9=10/n | | 3-(4x+1-(x+2))=2x+14 | | 7(-6+x)=-28 | | 2(-5x-3)=-96 | | -3(4x-7)=93 |

Equations solver categories