If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/5x)+(x+30)+x+(3/5x)=180
We move all terms to the left:
(2/5x)+(x+30)+x+(3/5x)-(180)=0
Domain of the equation: 5x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+2/5x)+(x+30)+x+(+3/5x)-180=0
We add all the numbers together, and all the variables
x+(+2/5x)+(x+30)+(+3/5x)-180=0
We get rid of parentheses
x+2/5x+x+3/5x+30-180=0
We multiply all the terms by the denominator
x*5x+x*5x+30*5x-180*5x+2+3=0
We add all the numbers together, and all the variables
x*5x+x*5x+30*5x-180*5x+5=0
Wy multiply elements
5x^2+5x^2+150x-900x+5=0
We add all the numbers together, and all the variables
10x^2-750x+5=0
a = 10; b = -750; c = +5;
Δ = b2-4ac
Δ = -7502-4·10·5
Δ = 562300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{562300}=\sqrt{100*5623}=\sqrt{100}*\sqrt{5623}=10\sqrt{5623}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-750)-10\sqrt{5623}}{2*10}=\frac{750-10\sqrt{5623}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-750)+10\sqrt{5623}}{2*10}=\frac{750+10\sqrt{5623}}{20} $
| 7+6p=-p+6p | | 4/9+m=5/6 | | -6(-1)-8y=-2 | | 14÷x=3.5 | | -7+4m+10=15-2m | | 5^2x=7.5 | | 2/5x+x+30+x+3/5x=180 | | 1/6s-1/2s+1=45/2 | | 13.64=8x.52 | | (2x^2–3x+4)(2x–3)= | | 2/5x+x+30°+x+3/5x=180° | | 5a+7=-60 | | 1/2(4r+6)=2/3(3=6r) | | 7(x-5)/3=24 | | 4(n+2)=-4 | | c/3+1=10 | | x²+x-240=0 | | (2x+25)(3x+5)+90+90=360 | | -9x+2(-3)=3 | | 2-x-3x=2-x+18 | | v-3.6=2.49 | | 1/6s-1/2s-2/2=45/2 | | 4x-46=84-9x | | 1/6-1/2s-2/2=45/2 | | 9n-7=4 | | 3x-12=3(x+1)-10 | | 14b+3b+6b-21b-b-1=17 | | Y=500x+8000 | | 2=3(y+2)-7y | | 32a+10a-23a-14a+10a+4=19 | | 2(4x+3)-3x=17=5x | | 3x+x+35=180 |