If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/5)x+1=25/9
We move all terms to the left:
(2/5)x+1-(25/9)=0
Domain of the equation: 5)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+2/5)x+1-(+25/9)=0
We multiply parentheses
2x^2+1-(+25/9)=0
We get rid of parentheses
2x^2+1-25/9=0
We multiply all the terms by the denominator
2x^2*9-25+1*9=0
We add all the numbers together, and all the variables
2x^2*9-16=0
Wy multiply elements
18x^2-16=0
a = 18; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·18·(-16)
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{2}}{2*18}=\frac{0-24\sqrt{2}}{36} =-\frac{24\sqrt{2}}{36} =-\frac{2\sqrt{2}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{2}}{2*18}=\frac{0+24\sqrt{2}}{36} =\frac{24\sqrt{2}}{36} =\frac{2\sqrt{2}}{3} $
| 98=6(k+8) | | 35x-700=-105 | | x+1,6=9,9 | | 9a-48=a | | (y-1)=49 | | x+9,8=4,5 | | 1/212(4x-8)=32 | | 12-5x+x^=0 | | y+-892=-567 | | 1+7y=57 | | 10-5r=2(-5r-7)-3r | | Y=15.66x | | 8+10b=-7-5(b+3) | | –78=t+17 | | b-20=-23 | | 3p=5p-6 | | 6x=(-48) | | (x-4)2=2 | | 13x-4=3x+7 | | x+8,1=2,7 | | 8(-2p+2)=-5+5p | | 4(m+3)=2(3m-4) | | (2x+30)+(7×-3)=90 | | ?x2.4=13.5 | | x+8,2=2,7 | | x^=10x-3 | | 23x=27 | | 80=10j | | 1.71(q-9)+6=7.71 | | 14)3k+9=36 | | -x+5=1”10 | | q–89=11 |