(2/5)n+4=20

Simple and best practice solution for (2/5)n+4=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)n+4=20 equation:



(2/5)n+4=20
We move all terms to the left:
(2/5)n+4-(20)=0
Domain of the equation: 5)n!=0
n!=0/1
n!=0
n∈R
We add all the numbers together, and all the variables
(+2/5)n+4-20=0
We add all the numbers together, and all the variables
(+2/5)n-16=0
We multiply parentheses
2n^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $

See similar equations:

| 8(4k-4)=-5k-32) | | 10/6=3/y | | 565+656-5487+985765-86143=v | | 10=5.7x-4.7x^2+8.7 | | 10=b(10) | | 2-10=-2w-4w | | 7b-b^2-60=0 | | Y=0.6x-3;(-2,2) | | -7(5x-3)+1=-35+22 | | 24=7a-3a | | −3.2/f​ =0.01 | | v=3.14(15ㅌ^4 | | ?x2=90 | | 3/7t=-1/14 | | 3x+8+7x-5=83 | | V=3.14*(3x^2)5x^2 | | x-40-(5x+14)=180 | | x-(-9.9)=51 | | 23x+1=7 | | 1=10−3s | | 2(2n+4)=9(3n+7)+7 | | 12x-105=15 | | 38+8a=2(8a+3) | | 6(x-6)=-3(x+3 | | x-55-(4x-5)=180 | | -9=m-(-4) | | 3g+6=4g-4 | | 12(x+3)=-3(x+27) | | -9y+30=-4y | | (3/5)n+3=18, | | d=2.5(8)+13.3 | | -16(6+x)=4(x-64) |

Equations solver categories