(2/5)b+1=11

Simple and best practice solution for (2/5)b+1=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)b+1=11 equation:



(2/5)b+1=11
We move all terms to the left:
(2/5)b+1-(11)=0
Domain of the equation: 5)b!=0
b!=0/1
b!=0
b∈R
We add all the numbers together, and all the variables
(+2/5)b+1-11=0
We add all the numbers together, and all the variables
(+2/5)b-10=0
We multiply parentheses
2b^2-10=0
a = 2; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·2·(-10)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*2}=\frac{0-4\sqrt{5}}{4} =-\frac{4\sqrt{5}}{4} =-\sqrt{5} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*2}=\frac{0+4\sqrt{5}}{4} =\frac{4\sqrt{5}}{4} =\sqrt{5} $

See similar equations:

| 5(t+40)=-t-t | | 9h-6h-2h=11 | | -5(a+3)=+55 | | 677e=6567 | | 3x+150=51 | | x-6*50=90 | | 5y=646 | | x-6(50)=90 | | –2s+9=21 | | 4K-3k=8 | | 13-g=8.1 | | 10=(12x) | | 17s-2s-18s=12 | | 1(5x+6)=18 | | 2(5x+6=18 | | 4y+29=-3y | | -7w-5=-2(w-5) | | 91+(w+10)+(w+19)=180 | | 21d=7 | | 2w+60+(w-12)=180 | | 4=(9x+10) | | 4b+8=18 | | 6a^2+1=0 | | x^2+70x-800=0 | | 7q-4q-q=20 | | t=14=53 | | 4n+7=0 | | a(a-1)=a2+3 | | 12h-11h=10 | | h/5-(10)=-8 | | D=340x2 | | 8(x2-2)+3x=61 |

Equations solver categories