(2/5)(x+3)=6

Simple and best practice solution for (2/5)(x+3)=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/5)(x+3)=6 equation:



(2/5)(x+3)=6
We move all terms to the left:
(2/5)(x+3)-(6)=0
Domain of the equation: 5)(x+3)!=0
x∈R
We add all the numbers together, and all the variables
(+2/5)(x+3)-6=0
We multiply parentheses ..
(+2x^2+2/5*3)-6=0
We multiply all the terms by the denominator
(+2x^2+2-6*5*3)=0
We get rid of parentheses
2x^2+2-6*5*3=0
We add all the numbers together, and all the variables
2x^2-88=0
a = 2; b = 0; c = -88;
Δ = b2-4ac
Δ = 02-4·2·(-88)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*2}=\frac{0-8\sqrt{11}}{4} =-\frac{8\sqrt{11}}{4} =-2\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*2}=\frac{0+8\sqrt{11}}{4} =\frac{8\sqrt{11}}{4} =2\sqrt{11} $

See similar equations:

| 3(-3n+2)=17+2n | | –2w=10 | | Y=22-10x10x+(22-10x)=22 | | x+5-13=40 | | p-(-1)=(7)2 | | -6y-3=-2y-6y+7 | | 1-r-6r=-17 | | -3(x+3)=-3(x-1)-5. | | 29=1.2t+5 | | (2x-6)+(2x-12)=14 | | 3(x+3)=-3(x-1)-5. | | 6(z-5)+8=17 | | 5=512x+215 | | 4x-9/7=5x+11/8 | | 0=4-q | | -4x-6=-4x+3 | | -2(x+3)=-2(x-1)-4. | | 274=-8(1-7x)+2 | | 3(x+1)=-2(x-1)-4. | | -11/k=1/6 | | 8b-16=48-4b | | 18=y/4-11 | | -15=12x-6x+9 | | X=0,8x+72 | | 5-(a)=14 | | -3(x-6)-2(7+3x)=95 | | (X+20)+(x+21)=23 | | |x+3.5|=68 | | x/18+x/12=40/60 | | x/3-8=-32 | | 48=3(n-4) | | 2)3x+8=4x+6 |

Equations solver categories