(2/3x)+(x+40)=180

Simple and best practice solution for (2/3x)+(x+40)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3x)+(x+40)=180 equation:



(2/3x)+(x+40)=180
We move all terms to the left:
(2/3x)+(x+40)-(180)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3x)+(x+40)-180=0
We get rid of parentheses
2/3x+x+40-180=0
We multiply all the terms by the denominator
x*3x+40*3x-180*3x+2=0
Wy multiply elements
3x^2+120x-540x+2=0
We add all the numbers together, and all the variables
3x^2-420x+2=0
a = 3; b = -420; c = +2;
Δ = b2-4ac
Δ = -4202-4·3·2
Δ = 176376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176376}=\sqrt{4*44094}=\sqrt{4}*\sqrt{44094}=2\sqrt{44094}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-420)-2\sqrt{44094}}{2*3}=\frac{420-2\sqrt{44094}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-420)+2\sqrt{44094}}{2*3}=\frac{420+2\sqrt{44094}}{6} $

See similar equations:

| H=-16t2+20 | | 9v/4=18 | | 250-25x=100+50x | | x-43=25 | | -17x+9x=9x-17 | | 18=−4y | | 4c-2=c+19 | | 7w-34=w+56 | | 5v-51=v+85 | | 7/x=14/18 | | r-11/3=- | | 36x^2+30x-24=0 | | 10x2=2x+3 | | 12(p+4)=132 | | 12(p+4=132 | | 7b+8b=10(b+3)-8(b-6) | | 2(9n-1)+7)n+6)=-60 | | H=17+x/6 | | 12=-7v+4(v+6) | | 5v-51=90 | | 5u(2u+1)+1=0 | | 5x+2x=25-4 | | x÷6=-9 | | 6(m-6)=90 | | 2g+1=0.2g-5 | | 10b-39=6b-15 | | 7(x-3)+7=-14 | | -2y-2=0 | | 10b-39=6b-2 | | (8-y)(3y+1)=0 | | ⅓f-⅔=⅔ | | 5(4p-8)=11(2p-2) |

Equations solver categories