(2/3)x-(1/4)x+(1/12)x=3

Simple and best practice solution for (2/3)x-(1/4)x+(1/12)x=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)x-(1/4)x+(1/12)x=3 equation:



(2/3)x-(1/4)x+(1/12)x=3
We move all terms to the left:
(2/3)x-(1/4)x+(1/12)x-(3)=0
Domain of the equation: 3)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 4)x!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 12)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)x-(+1/4)x+(+1/12)x-3=0
We multiply parentheses
2x^2-x^2+x^2-3=0
We add all the numbers together, and all the variables
2x^2-3=0
a = 2; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·2·(-3)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*2}=\frac{0-2\sqrt{6}}{4} =-\frac{2\sqrt{6}}{4} =-\frac{\sqrt{6}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*2}=\frac{0+2\sqrt{6}}{4} =\frac{2\sqrt{6}}{4} =\frac{\sqrt{6}}{2} $

See similar equations:

| 2/3x-1/4x+1/12x=3 | | 5(-5)=4x-3 | | 3x-31+5=3x-31 | | 71+62+2x+5=180 | | 71+62+2x+5=18- | | 10x-32=8x | | 23+90+6x-11=180 | | 6x17=6x(10+7) | | 0.7=0.14x | | 9x2+16x-36=0 | | 10x+46=5x+86 | | 3x^2+12x-231=x | | 1/27=81^3x+3 | | 2c-29=-49 | | -90=-6x-12 | | 35k-29=14-8k | | 30-2n=9n | | F(x)=3/2-9 | | 13/4d=-65 | | 18x+3=2x+4 | | 30=x=22-1/2x | | 2x+2(x=16)=136 | | (2y-12)(y^2-4)=0 | | 2x+28+4x+26=180 | | 4m+1=187-2m | | 18b+9=b+9 | | 10d=10.000.000 | | -10d-11+16d=9d+13 | | 2=4-8x | | n3=10=85 | | 6=3p+18 | | 10+4b=-30 |

Equations solver categories