If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)x+(2/3)x=7/8
We move all terms to the left:
(2/3)x+(2/3)x-(7/8)=0
Domain of the equation: 3)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+2/3)x+(+2/3)x-(+7/8)=0
We multiply parentheses
2x^2+2x^2-(+7/8)=0
We get rid of parentheses
2x^2+2x^2-7/8=0
We multiply all the terms by the denominator
2x^2*8+2x^2*8-7=0
Wy multiply elements
16x^2+16x^2-7=0
We add all the numbers together, and all the variables
32x^2-7=0
a = 32; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·32·(-7)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{14}}{2*32}=\frac{0-8\sqrt{14}}{64} =-\frac{8\sqrt{14}}{64} =-\frac{\sqrt{14}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{14}}{2*32}=\frac{0+8\sqrt{14}}{64} =\frac{8\sqrt{14}}{64} =\frac{\sqrt{14}}{8} $
| 2(x+3)=x+15-4 | | 1+8x-5=11x+5 | | x+11+x+6=33 | | 9k^2-k=1 | | -6+4(v+5)=4 | | 8x+9=3(x-7) | | 9k-k=1 | | 7(6d-1)+d=36 | | 75=3(-10p-3)+6p | | M3=5k+12 | | M1=95+7h | | 1/3n-7=5/3(n-5) | | 4(x-7)(x+7)=2x-5^2-61 | | -4(4r-4)+2r-4=-30 | | 4x^2-2x=110 | | -2(-3r+3)+3r+3=78 | | 6x+2=$x+14 | | Y=27x+3,000 | | 12x-25=7x+2 | | 2(r-2)=-2 | | 2(2z+27)=18 | | 414={(150*x)/(150+x)} | | 3x-13=23-7x | | 1/10+5=x1/4 | | 6(2y-)=36 | | 10=1/{(1/20)+(1/x)} | | x=1/((1/20)+(1/20)) | | 10=1/((1/20)+(1/x)) | | 101x-1=100x | | 15-3r=27 | | 8(x-4)=5(x+1) | | -5r-9=-3r-9 |