If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)a+1/5=3/5
We move all terms to the left:
(2/3)a+1/5-(3/5)=0
Domain of the equation: 3)a!=0We add all the numbers together, and all the variables
a!=0/1
a!=0
a∈R
(+2/3)a+1/5-(+3/5)=0
We multiply parentheses
2a^2+1/5-(+3/5)=0
We get rid of parentheses
2a^2+1/5-3/5=0
We multiply all the terms by the denominator
2a^2*5+1-3=0
We add all the numbers together, and all the variables
2a^2*5-2=0
Wy multiply elements
10a^2-2=0
a = 10; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·10·(-2)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*10}=\frac{0-4\sqrt{5}}{20} =-\frac{4\sqrt{5}}{20} =-\frac{\sqrt{5}}{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*10}=\frac{0+4\sqrt{5}}{20} =\frac{4\sqrt{5}}{20} =\frac{\sqrt{5}}{5} $
| (3x+5)=(2x+2)=(3x-5) | | 5.53+0.9q=-7q | | (x+33)-5x=52 | | 2(j+–1)−11=1 | | 6y-2=10+4y | | c+3=36 | | 3x+18+6x-16=137 | | (5–3i)=(7+2i) | | -1+4p+4p+8=9+2(p+2)+6p | | 0.5+0.9=0.7x-0.7 | | b+17=-1 | | 4/n-7=2/n+5 | | 2+7+4b-4=b+6b | | -45=(5/6)a | | 5b−17=6b | | K-6-7+3k=48 | | 2(k-4)=2 | | -16-18j=-20j | | 5x+5+6x-3=35 | | -57=-8(n+3)-(n-3) | | 781=11s | | -3(7+2x)=93 | | 2x+2+3x-1=16 | | 90=2x+3x-10 | | 5b-17=6b | | 4x+3-5x=9+2x | | -3=b+3 | | (a/3.2)=-4.5 | | 1/4x+17=x−4 | | 2-7h=-8h+19 | | 2x-19.1=x-2.5=180 | | 4x+1=38 |