(2/3)*x-4*x=-4/3

Simple and best practice solution for (2/3)*x-4*x=-4/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)*x-4*x=-4/3 equation:



(2/3)*x-4*x=-4/3
We move all terms to the left:
(2/3)*x-4*x-(-4/3)=0
Domain of the equation: 3)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)*x-4*x-(-4/3)=0
We add all the numbers together, and all the variables
-4x+(+2/3)*x-(-4/3)=0
We multiply parentheses
2x^2-4x-(-4/3)=0
We get rid of parentheses
2x^2-4x+4/3=0
We multiply all the terms by the denominator
2x^2*3-4x*3+4=0
Wy multiply elements
6x^2-12x+4=0
a = 6; b = -12; c = +4;
Δ = b2-4ac
Δ = -122-4·6·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{3}}{2*6}=\frac{12-4\sqrt{3}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{3}}{2*6}=\frac{12+4\sqrt{3}}{12} $

See similar equations:

| -4(z+4)=6-3z | | -3(2x-4)-5(-5x+7)=-4 | | 1/4(8x+12)=1 | | 18-n=20 | | 2x-4(3x-4)=-44 | | 1-3(a-2)=27 | | -4-5b-5=11 | | 50(2)-x=70 | | 5x=14x+9 | | -7u+7=-3u+7 | | 8t^2-22t-56=0 | | x-(3-x)=x+15 | | 6b+6b=-12 | | -8r+5(3r+1)=-44 | | -3/4y-1/12=-1/9y-1/24 | | 1/3x—5+171=x | | -6=-10+x/4 | | 5y-3=y+56 | | 11x+45=4x+3 | | 2/5=5/8n-160 | | -(7r-2)=2 | | 16x^+4=0 | | 3n-5+2n=-20 | | 5(t-5)=5t+24 | | 256^x=64 | | 2y-7=7y+28 | | -3/4(x+1/9)=-1/9(x+3/8) | | 5x-(3x+0)=1 | | x=20x≤44 | | -3(9d+8)=-25 | | 800*0.032*t=150 | | Y=2.3x+64 |

Equations solver categories