(2/3)*x+1=27/8

Simple and best practice solution for (2/3)*x+1=27/8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)*x+1=27/8 equation:



(2/3)*x+1=27/8
We move all terms to the left:
(2/3)*x+1-(27/8)=0
Domain of the equation: 3)*x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)*x+1-(+27/8)=0
We multiply parentheses
2x^2+1-(+27/8)=0
We get rid of parentheses
2x^2+1-27/8=0
We multiply all the terms by the denominator
2x^2*8-27+1*8=0
We add all the numbers together, and all the variables
2x^2*8-19=0
Wy multiply elements
16x^2-19=0
a = 16; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·16·(-19)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{19}}{2*16}=\frac{0-8\sqrt{19}}{32} =-\frac{8\sqrt{19}}{32} =-\frac{\sqrt{19}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{19}}{2*16}=\frac{0+8\sqrt{19}}{32} =\frac{8\sqrt{19}}{32} =\frac{\sqrt{19}}{4} $

See similar equations:

| -3b-4b=24 | | 3(2a-5)=9 | | 24=7(5s-3) | | 110+6x+4=180 | | 2x+6=1.25x | | 4z+2=44 | | 3y÷-6=10.5 | | 4(9-3y)=19 | | 60+10x-8=180 | | 0.19−0.01(x+2)=−0.04(2−x) | | 32-6d=7(8d+9) | | 3y-11=36 | | 25m+8=35m-30 | | 5x(16/5x)=17 | | 19-4×=13+2x | | 120+x+71=180 | | 9/12=2/x=18/27 | | 70+5x-5+5x+5=180 | | 4z+2=20 | | 8s+5(36.03)=2s+9(36.03) | | 40.13=18.53+3x | | 5x−5=10 | | N.3n=90 | | -4=-3x+20 | | 5a—4=21= | | 5^3x+11=-25^2x | | 8(8+3v)=208 | | 5.49+3.3m=0.3m-8.61 | | 4(x–2)=2x+14 | | (3x+18)+(5x-4)=180 | | 2+9x=115 | | -3(-6-6k)=144 |

Equations solver categories