If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(3x+9)=18
We move all terms to the left:
(2/3)(3x+9)-(18)=0
Domain of the equation: 3)(3x+9)!=0We add all the numbers together, and all the variables
x∈R
(+2/3)(3x+9)-18=0
We multiply parentheses ..
(+6x^2+2/3*9)-18=0
We multiply all the terms by the denominator
(+6x^2+2-18*3*9)=0
We get rid of parentheses
6x^2+2-18*3*9=0
We add all the numbers together, and all the variables
6x^2-484=0
a = 6; b = 0; c = -484;
Δ = b2-4ac
Δ = 02-4·6·(-484)
Δ = 11616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11616}=\sqrt{1936*6}=\sqrt{1936}*\sqrt{6}=44\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-44\sqrt{6}}{2*6}=\frac{0-44\sqrt{6}}{12} =-\frac{44\sqrt{6}}{12} =-\frac{11\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+44\sqrt{6}}{2*6}=\frac{0+44\sqrt{6}}{12} =\frac{44\sqrt{6}}{12} =\frac{11\sqrt{6}}{3} $
| -3+1/3x=7 | | 9+p=11 | | –d3=–4 | | 3x+43=2x+20 | | 3x+43=2x | | 4.905t^2+9.38t+-40.9=0 | | 50f=200 | | 6x4=40 | | −98=4x-504x−50 | | 25+4x=-X+75 | | 5x+30=30x | | -3=-9+n/7 | | 25x+40=1 | | –2(b+–13)+–19=–11 | | -8(3-2w)=4(3w+8) | | -3t–8t+6=5t—4 | | -2+7k=110 | | 288t-16^2=0 | | 9x-37=2x+5 | | 4(3m+2)=2(7m-1) | | 11x/10+2=9×/8 | | 2x+16=5×-14 | | x+2=4x+13 | | 90=x/3•100 | | x+2=4x−13 | | 2p+4=106+4=10 | | 6x^2+12x=12 | | 1x+3x+1x+15=180 | | 6a^2-5=a | | 5^t=7 | | 2n^2=10 | | 3x+30=5×+14 |