(2/3)(x+9)=5+x

Simple and best practice solution for (2/3)(x+9)=5+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2/3)(x+9)=5+x equation:



(2/3)(x+9)=5+x
We move all terms to the left:
(2/3)(x+9)-(5+x)=0
Domain of the equation: 3)(x+9)!=0
x∈R
We add all the numbers together, and all the variables
(+2/3)(x+9)-(x+5)=0
We get rid of parentheses
(+2/3)(x+9)-x-5=0
We multiply parentheses ..
(+2x^2+2/3*9)-x-5=0
We multiply all the terms by the denominator
(+2x^2+2-x*3*9)-5*3*9)=0
We add all the numbers together, and all the variables
(+2x^2+2-x*3*9)=0
We get rid of parentheses
2x^2-x*3*9+2=0
Wy multiply elements
2x^2-27x*9+2=0
Wy multiply elements
2x^2-243x+2=0
a = 2; b = -243; c = +2;
Δ = b2-4ac
Δ = -2432-4·2·2
Δ = 59033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-243)-\sqrt{59033}}{2*2}=\frac{243-\sqrt{59033}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-243)+\sqrt{59033}}{2*2}=\frac{243+\sqrt{59033}}{4} $

See similar equations:

| 1/2n-2/3=1/5n-2 | | -3w-9=7-w | | 8n-3=5(2n+1) | | 2x+2x+2=134 | | 1.6(3y+-1)+2=5y | | 2(n-2)=2(-7n+6) | | x^2+32x+26=1 | | 0=(3-5i)+(5+3i) | | 30-5x=180 | | -4c=-10-5c | | f(-3/2)=-3/2-5(-3/2)-2 | | -10=2(z–7) | | 30-5x+170-45x=180 | | -51=8y+9y | | -2=-7s–2 | | 2x+55=43 | | -2b+12=20 | | 30-5x=170-45 | | 18=3(r–5) | | -3(u+5)+13=34 | | 50=4z+6z | | 3c-10=5(c-4) | | 6(3k+5))=39 | | 84=2b+10b | | 3/4b=10-b | | -3,5x=+9 | | g2=35 | | -7z–16=-100 | | 37=18+a | | 15=13+x4 | | x=11=2x+22 | | 18=10v+8v |

Equations solver categories