If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2/3)(9x-6)=4x+8
We move all terms to the left:
(2/3)(9x-6)-(4x+8)=0
Domain of the equation: 3)(9x-6)!=0We add all the numbers together, and all the variables
x∈R
(+2/3)(9x-6)-(4x+8)=0
We get rid of parentheses
(+2/3)(9x-6)-4x-8=0
We multiply parentheses ..
(+18x^2+2/3*-6)-4x-8=0
We multiply all the terms by the denominator
(+18x^2+2-4x*3*-6)-8*3*-6)=0
We add all the numbers together, and all the variables
(+18x^2+2-4x*3*-6)=0
We get rid of parentheses
18x^2-4x*3*+2-6=0
We add all the numbers together, and all the variables
18x^2-4x*3*-4=0
Wy multiply elements
18x^2-12x^2-4=0
We add all the numbers together, and all the variables
6x^2-4=0
a = 6; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·6·(-4)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*6}=\frac{0-4\sqrt{6}}{12} =-\frac{4\sqrt{6}}{12} =-\frac{\sqrt{6}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*6}=\frac{0+4\sqrt{6}}{12} =\frac{4\sqrt{6}}{12} =\frac{\sqrt{6}}{3} $
| 8x²-96x=0 | | 5-v=5+5v-4-8 | | 8x+3x+5=3x+1 | | 16x+3=100 | | -(2b+2)=-8-5b | | 27=9c-17+-5c | | -5v-6=-12-5v | | 8x^2+160=0 | | 18/30=24/n | | 15=40n | | 4h-13=-19 | | 18/30=24/x | | 0.074x+5.357=0.06x+5.35 | | 170=1/2*h(8+9) | | 6x+5-10=5x-2 | | (7x+3)=(7x^2+x-18) | | 64+56+(2x+22)=180 | | 2(x+1)=2x=2(x+2) | | 4c-17-7c=2c-8 | | -5n+14=89 | | 0.5x+0.28(200)=0.25(166) | | n+.07n=90.95 | | 6000=1/2a*20*400 | | 78+57+(8x+5)=180 | | A=3z+63 | | 2-3x=2x=2 | | 3x-5(x-5)=-4+5x-20 | | -8+2x=-x+8+x | | 28c+18-6=48 | | 73+48+(10x+9)=180 | | S(x)=-4x-9;3 | | 6x+5-10=5×-2 |