(2.5y-2)(2y+2)=(10y-1)(0.5-3)

Simple and best practice solution for (2.5y-2)(2y+2)=(10y-1)(0.5-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2.5y-2)(2y+2)=(10y-1)(0.5-3) equation:



(2.5y-2)(2y+2)=(10y-1)(0.5-3)
We move all terms to the left:
(2.5y-2)(2y+2)-((10y-1)(0.5-3))=0
We add all the numbers together, and all the variables
(2.5y-2)(2y+2)-((10y-1)(-2.5))=0
We multiply parentheses ..
(+4y^2+4y-4y-4)-((10y-1)(-2.5))=0
We calculate terms in parentheses: -((10y-1)(-2.5)), so:
(10y-1)(-2.5)
We multiply parentheses ..
(-25y+2.5)
We get rid of parentheses
-25y+2.5
Back to the equation:
-(-25y+2.5)
We get rid of parentheses
4y^2+4y-4y+25y-4-2.5=0
We add all the numbers together, and all the variables
4y^2+25y-6.5=0
a = 4; b = 25; c = -6.5;
Δ = b2-4ac
Δ = 252-4·4·(-6.5)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-27}{2*4}=\frac{-52}{8} =-6+1/2 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+27}{2*4}=\frac{2}{8} =1/4 $

See similar equations:

| 9x+6=-5+5x+23 | | 4x-3(0)=24 | | -4y+2y=-30 | | 5x-43=8x+18 | | -8m=-10m+2m | | 9x^2+200x-10000=0 | | 9x+6=-5=5x+23 | | -j-10=8-7j | | v/8=4/1 | | 1+u=-7-u | | 16x=2x+8 | | -4c=-2-8 | | -9+9v=6v+6v+9 | | (9x+32)/9= | | -1-3s=-4s+8 | | x-1/x=24/5 | | -9k-3=-8-8k | | P(x)=2x+4 | | 4(x-1)+3=6x-2(-2+x) | | 6h+10=8h | | 3(x-5)+5(2x+7)=46 | | -4n=-10-3n | | 5(2x+1)=8x-31 | | -10=10(m-9) | | -6-5f=1-4f | | 7x×4x=0 | | 9(x+2)-7=5x=4(2=x) | | -10m=10-5m | | 4y-10=-y | | 2r=-8+r | | 5+3/x=7 | | 2w=9+3w |

Equations solver categories