(2-x)(2+x)=1

Simple and best practice solution for (2-x)(2+x)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2-x)(2+x)=1 equation:



(2-x)(2+x)=1
We move all terms to the left:
(2-x)(2+x)-(1)=0
We add all the numbers together, and all the variables
(-1x+2)(x+2)-1=0
We multiply parentheses ..
(-1x^2-2x+2x+4)-1=0
We get rid of parentheses
-1x^2-2x+2x+4-1=0
We add all the numbers together, and all the variables
-1x^2+3=0
a = -1; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-1)·3
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-1}=\frac{0-2\sqrt{3}}{-2} =-\frac{2\sqrt{3}}{-2} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-1}=\frac{0+2\sqrt{3}}{-2} =\frac{2\sqrt{3}}{-2} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 13x/4=3 | | g—16=8 | | 7+x+-4=-21+4x | | -3x+25-8x=0 | | 4(4)-3y=12 | | X=15=-2x+34 | | 1x-30-9x=0 | | 15=-2x+34 | | x-17=-57 | | X-12+1/2x+6+2x-129=180 | | -3(2x-1)(2x+1)=2 | | 6-5=k | | 5/7=x/91 | | 6(w-11)=3(3w+5) | | 7x+12+6x=4 | | 8x+2-6x=4(-3x-4) | | 6x-4x+9=17 | | x/4=90 | | 5(-6-3d)=3(7d+8) | | f(2.5)=(1)/(2.5-2) | | 17x+5=3x+5 | | -4+16+7-2b=1+5b | | (4t+7)^2=44 | | 8x+2-6x=4(3x-4) | | (-1+4)/(k-4)=3/4 | | -2/5k=30 | | 16=x/9-8 | | 1/2(d+3)=5 | | X+7+7(x-2)=8 | | 1/3b+11=8 | | –15+n=–9 | | 20+2(3x+10)=2(x)-3(3+x |

Equations solver categories