(2+x(1/2))-4(x)=0

Simple and best practice solution for (2+x(1/2))-4(x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2+x(1/2))-4(x)=0 equation:



(2+x(1/2))-4(x)=0
We add all the numbers together, and all the variables
(2+x(+1/2))-4x=0
We add all the numbers together, and all the variables
-4x+(2+x(+1/2))=0
We multiply all the terms by the denominator
-4x*2))+(2+x(+1=0
Wy multiply elements
-8x^2+1=0
a = -8; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-8)·1
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*-8}=\frac{0-4\sqrt{2}}{-16} =-\frac{4\sqrt{2}}{-16} =-\frac{\sqrt{2}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*-8}=\frac{0+4\sqrt{2}}{-16} =\frac{4\sqrt{2}}{-16} =\frac{\sqrt{2}}{-4} $

See similar equations:

| -9.4c-17.68=-8.1c | | 7(1+7r)-6=-146 | | 1/2y=22 | | -6x-(8x+5)=-15-4x | | 7b+1=15 | | 63=7(x-3) | | 5/6x+7/6=-3 | | 10^x^2+1=15 | | 20+6z=-18+4z | | 5x+21=189 | | (X+8)/5=(31/20)-{(x-2)/4} | | 20-9j=-20-20+3j | | 19x+95=171 | | 2x+(5x-108)=180 | | 4-15=r | | -7v-15=2 | | 2x-9=3(x+1) | | 120+36x=6x | | (4x-5)+x=360 | | 48+20=m | | 16u=11u+20 | | 5x+1=4x+3+x | | 1b+6-5b=22 | | 0.2(3x+)+4=26 | | 9-4.5=r | | x/9+7=5 | | 10+10d-1=4d+3 | | 23x+69=161 | | 13-10x=-17 | | 8+8b-6b=6 | | -26=-6+5x | | 1-d=5 |

Equations solver categories