(2)/(x)+(-3)/(x+8)=4

Simple and best practice solution for (2)/(x)+(-3)/(x+8)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2)/(x)+(-3)/(x+8)=4 equation:



(2)/(x)+(-3)/(x+8)=4
We move all terms to the left:
(2)/(x)+(-3)/(x+8)-(4)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: (x+8)!=0
We move all terms containing x to the left, all other terms to the right
x!=-8
x∈R
We calculate fractions
(2x+16)/(x^2+8x)+(-3x)/(x^2+8x)-4=0
We multiply all the terms by the denominator
(2x+16)+(-3x)-4*(x^2+8x)=0
We multiply parentheses
-4x^2+(2x+16)+(-3x)-32x=0
We get rid of parentheses
-4x^2+2x-3x-32x+16=0
We add all the numbers together, and all the variables
-4x^2-33x+16=0
a = -4; b = -33; c = +16;
Δ = b2-4ac
Δ = -332-4·(-4)·16
Δ = 1345
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-33)-\sqrt{1345}}{2*-4}=\frac{33-\sqrt{1345}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-33)+\sqrt{1345}}{2*-4}=\frac{33+\sqrt{1345}}{-8} $

See similar equations:

| 10u-9u=20 | | (v-2)^2=2v^2-11v+10 | | -2(2x-1)=-2x-2 | | 1-3x/5=-7*5 | | 16t-14t-t=16 | | 3d-2d+5d-4d=12 | | 3x+1.5=7x-4.5 | | 2/3x-x=x/6-5/2 | | 8q-3q-3q=10 | | F(-2)=2+2x-10 | | 2x+7=1x-9 | | 5q+3(-8+3q)=1-q | | 9r+12r+19r-17r+19r=4 | | F(x)=2+2x-10 | | 14+2a-11a+5a=10 | | 13g+5g-16g=10 | | 7x/2+5=30 | | −3+5x−4x=1 | | 8z-6z-z=17 | | 8s-8s+4s+2s+3s=18 | | (c+4)²=c²+28  | | 19n-5n-3n+2n-12n=13 | | 3x-11+2x+11=6x-17 | | 20q-10q-8q+2q=16 | | (x+4)²=x²+28  | | −2x−9=−7 | | (c+4)²=c²+28  | | 12v+2v-11v=12 | | 10v-9v=1 | | 4g+5(7g-3)=9(g-5 | | 4g+5(57g-3)=9(g-5 | | 19s+4s-s-20s+s=6 |

Equations solver categories