(2(2x+5)-11)(2x+5)=40

Simple and best practice solution for (2(2x+5)-11)(2x+5)=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2(2x+5)-11)(2x+5)=40 equation:



(2(2x+5)-11)(2x+5)=40
We move all terms to the left:
(2(2x+5)-11)(2x+5)-(40)=0
We calculate terms in parentheses: +(2(2x+5)-11)(2x+5), so:
2(2x+5)-11)(2x+5
We multiply parentheses
4x-11)(2x+10+5
We add all the numbers together, and all the variables
4x-11)(2x+15
Back to the equation:
+(4x-11)(2x+15)
We multiply parentheses ..
(+8x^2+60x-22x-165)-40=0
We get rid of parentheses
8x^2+60x-22x-165-40=0
We add all the numbers together, and all the variables
8x^2+38x-205=0
a = 8; b = 38; c = -205;
Δ = b2-4ac
Δ = 382-4·8·(-205)
Δ = 8004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8004}=\sqrt{4*2001}=\sqrt{4}*\sqrt{2001}=2\sqrt{2001}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{2001}}{2*8}=\frac{-38-2\sqrt{2001}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{2001}}{2*8}=\frac{-38+2\sqrt{2001}}{16} $

See similar equations:

| 13w-(4w-1)=w-58 | | 9xC=-19 | | 3x-10=4x-23=2x+7 | | 32x+2x-5=10 | | -8=z+6.4 | | k/8=17/4 | | -3.25+5.3u=14.48+10.3u | | 5^2x-3=32 | | 300x-50=3x-5-x | | 61+89+8x-6=180 | | x+14+(-x)=14 | | -3.5=(-0.5)x | | 11q−4=3−6 | | 4v+2(v-3)=-30 | | 6x+3x+5=4x-4 | | 20g-1=-17+18g | | A=1-w | | -23d-14d=-22 | | 5+3(3x+8)=20 | | f-20=11f | | 3x2+20x+36=4 | | w-6=400 | | 32x+48+21=30x+15+9 | | 4t=–32 | | 13w-19-14w=15-3w | | 12x-24=3x-6 | | -2(x–1)=-24 | | (3x+17)+(5x+21)=180 | | 26=4y+6 | | 2x-16=8x-16 | | 9/6=c/36 | | k+38=-20 |

Equations solver categories