(199-4n)+(6n+35)+(n+10)=180

Simple and best practice solution for (199-4n)+(6n+35)+(n+10)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (199-4n)+(6n+35)+(n+10)=180 equation:


Simplifying
(199 + -4n) + (6n + 35) + (n + 10) = 180

Remove parenthesis around (199 + -4n)
199 + -4n + (6n + 35) + (n + 10) = 180

Reorder the terms:
199 + -4n + (35 + 6n) + (n + 10) = 180

Remove parenthesis around (35 + 6n)
199 + -4n + 35 + 6n + (n + 10) = 180

Reorder the terms:
199 + -4n + 35 + 6n + (10 + n) = 180

Remove parenthesis around (10 + n)
199 + -4n + 35 + 6n + 10 + n = 180

Reorder the terms:
199 + 35 + 10 + -4n + 6n + n = 180

Combine like terms: 199 + 35 = 234
234 + 10 + -4n + 6n + n = 180

Combine like terms: 234 + 10 = 244
244 + -4n + 6n + n = 180

Combine like terms: -4n + 6n = 2n
244 + 2n + n = 180

Combine like terms: 2n + n = 3n
244 + 3n = 180

Solving
244 + 3n = 180

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '-244' to each side of the equation.
244 + -244 + 3n = 180 + -244

Combine like terms: 244 + -244 = 0
0 + 3n = 180 + -244
3n = 180 + -244

Combine like terms: 180 + -244 = -64
3n = -64

Divide each side by '3'.
n = -21.33333333

Simplifying
n = -21.33333333

See similar equations:

| 5(x+5)-5=25 | | y=8/x-2 | | 2*2-3/5 | | 4v^2=8 | | 1.2k+2.3=-5k+7.4 | | 2v+9-6v=19 | | log(7)=log(13) | | (x-4)(2x-7)=0 | | 3-5x/6=9x-7/4 | | 5n+an=8b | | -[3]x+5y=-19 | | 3(2-3m)=-8m+5 | | 6x-7=-9x+13 | | x-15=2x-22 | | 21-5x=5-9x | | -x^4+4*x^2+6*x+1=0 | | -2y+6x=-10 | | 7/8x-5/8=9 | | 5x+75=3x+105 | | ln^4+ln(x-1)=0 | | 6-5a=-19 | | 4(x+6)-7=-23 | | 3x+7=106 | | 5/y=y-2/3 | | 4+11x=-36+x | | 5/y=y-821st/3 | | 2x-5y=32 | | 4x^3+x^2-3x=2 | | 5(x+8)=180 | | 0.5x-0.5=0.75+1-x | | 42+5y=82 | | -2/30(6x-27)=-4 |

Equations solver categories