If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(191/2+15)x=150+15x
We move all terms to the left:
(191/2+15)x-(150+15x)=0
Domain of the equation: 2+15)x!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
15)x!=-2
x!=-2/1
x!=-2
x∈R
(191/2+15)x-(15x+150)=0
We multiply parentheses
191x^2+15x-(15x+150)=0
We get rid of parentheses
191x^2+15x-15x-150=0
We add all the numbers together, and all the variables
191x^2-150=0
a = 191; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·191·(-150)
Δ = 114600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{114600}=\sqrt{100*1146}=\sqrt{100}*\sqrt{1146}=10\sqrt{1146}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{1146}}{2*191}=\frac{0-10\sqrt{1146}}{382} =-\frac{10\sqrt{1146}}{382} =-\frac{5\sqrt{1146}}{191} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{1146}}{2*191}=\frac{0+10\sqrt{1146}}{382} =\frac{10\sqrt{1146}}{382} =\frac{5\sqrt{1146}}{191} $
| 3x+2(3x+6)=33 | | 2(70-4x)=16x-12 | | 4+10x=-4+x | | 2x+9=10-(x-5) | | 7x^2=168-14x | | 16+j=30 | | 10(3+k)=-120 | | .8x+.5=x | | .8x+2=x | | Y=2/5x+13/3/5 | | 3x+2.5=12x-2.5x+2.5 | | .8x+1=x | | -8x^2+50x=0 | | 19-3x=22 | | x/4+3x/8= | | 4(b-1)-3=-(b+3)+1 | | 4/3c=20 | | 1.2y-2.5=-5/3 | | 8(14-8x)=-5x-65 | | xˆ3−6xˆ2−7x+60=0 | | ?x(-6)=180 | | (13x)(16x-12)=180 | | 2(2x-6)=x-36 | | (13x)(16x-12)=90 | | 4(-6)-2y=-4 | | x+1.3=7.5 | | x+6=-2x+7+5x-25 | | 13x+16x-12=90 | | 0.7x-0.2=8.3×+7.2 | | -1x2=-3x-1 | | 7m-88=-7m+66 | | x+5+14x=-23+5x+8x |