(180-x)=1/2(x)+9

Simple and best practice solution for (180-x)=1/2(x)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (180-x)=1/2(x)+9 equation:



(180-x)=1/2(x)+9
We move all terms to the left:
(180-x)-(1/2(x)+9)=0
Domain of the equation: 2x+9)!=0
x∈R
We add all the numbers together, and all the variables
(-1x+180)-(1/2x+9)=0
We get rid of parentheses
-1x-1/2x+180-9=0
We multiply all the terms by the denominator
-1x*2x+180*2x-9*2x-1=0
Wy multiply elements
-2x^2+360x-18x-1=0
We add all the numbers together, and all the variables
-2x^2+342x-1=0
a = -2; b = 342; c = -1;
Δ = b2-4ac
Δ = 3422-4·(-2)·(-1)
Δ = 116956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{116956}=\sqrt{4*29239}=\sqrt{4}*\sqrt{29239}=2\sqrt{29239}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(342)-2\sqrt{29239}}{2*-2}=\frac{-342-2\sqrt{29239}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(342)+2\sqrt{29239}}{2*-2}=\frac{-342+2\sqrt{29239}}{-4} $

See similar equations:

| 20+.5x=x | | z^2-0.4z-0.45=0 | | 3/4x-1/8=1/3= | | 2^(x+8)=15 | | -0.45z^2-0.4z+1=0 | | x3-8/x-2=x2+2x+4 | | 8z-z=-2+2z-1-7= | | x/5=5+(x-9/3) | | 1/2=1/10d= | | -13(z+2)+5(4z-7)=6(z-5)+9= | | 5x+1=6x-2x= | | 3•(x+4)-39=0 | | 7x^2+6=-117 | | 8x^2-5=-110 | | 4z^2+2z-1=0 | | x-47=95 | | 5x-37=x+19 | | 10x+(-10)=180 | | 5/2x=5-2.25 | | n=(4-1)*(4-2)*(4-3)*(4-4)*(4-5)*(4-6)/720 | | n=(4+1)*(4+2)*(4+3)*(4+4)*(4+5)*(4+6)/720 | | .19-6q=q.q | | 6-5(4x+9)=8 | | 4x-9=83 | | |2–5x=7x–12| | | 4x-10=77 | | 3(3w-3)=-6w+27 | | 3(w-3)=6w | | (100/x)*x=(275,000/270,000) | | 8x-229=5x-91 | | (2y-5)+65=180 | | 12^x+6=11^5x |

Equations solver categories