If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1732500/x)(1.066666666667x)=1760000
We move all terms to the left:
(1732500/x)(1.066666666667x)-(1760000)=0
Domain of the equation: x)(1.066666666667x)!=0We add all the numbers together, and all the variables
x∈R
(+1732500/x)(+1.066666666667x)-1760000=0
We multiply parentheses ..
(+1732500x^2)-1760000=0
We get rid of parentheses
1732500x^2-1760000=0
a = 1732500; b = 0; c = -1760000;
Δ = b2-4ac
Δ = 02-4·1732500·(-1760000)
Δ = 12196800000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12196800000000}=\sqrt{1742400000000*7}=\sqrt{1742400000000}*\sqrt{7}=1320000\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1320000\sqrt{7}}{2*1732500}=\frac{0-1320000\sqrt{7}}{3465000} =-\frac{1320000\sqrt{7}}{3465000} =-\frac{8\sqrt{7}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1320000\sqrt{7}}{2*1732500}=\frac{0+1320000\sqrt{7}}{3465000} =\frac{1320000\sqrt{7}}{3465000} =\frac{8\sqrt{7}}{21} $
| 7x-3=2x=17 | | 3y+11=33 | | 5(w-6)-7w=-22 | | 5(w-6)-7w=22 | | p-9/7=7/2 | | p-9/7=31/2 | | 4x+16/x×x=0 | | 6x2+29x+35=0 | | 12x2-42x+-18=0 | | 39,9x+30=54,9x | | 13(2x-5)=6x-7 | | 4a^2-11a-20=0 | | 136=1,25x+4x | | 10x-68=132 | | 5x15=60 | | 15u-12=-11 | | 10c^2+9c=1 | | 2/5x-2/10=9 | | 176=(x+8)+(2x-15)+(x/2+30)+x | | 153=x+2x+x/2+x | | t(t-15)=0 | | 3^(x)*2^(3x)*5^(2x)=0 | | 3^x*2^(3x)*5^(2x)=0 | | (x-3)^2+5x=21 | | 3x+7x-53=0 | | 18000=28000(x)^2 | | 5x+(+8+3x)=40 | | 49+4y=-12y+21 | | −6(x−9)=11(x−9) | | 14(z+3)-3(z-1)=5(z-1)+5(z-1) | | 4u+14=78 | | 100x-16x^2-154=0 |